
Jinyang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1602375/publications.pdf Version: 2024-02-01

LINVANC LI

#	Article	IF	CITATIONS
1	In-depth numerical analysis of crack initiation and evolution in coating–substrate systems under spherical indentation. Journal of Materials Research, 2022, 37, 747-762.	2.6	0
2	Wheat straw-core hydrogel spheres with polypyrrole nanotubes for the removal of organic dyes. Journal of Cleaner Production, 2022, 344, 131100.	9.3	15
3	Improved impedance matching by multi-componential metal-hybridized rGO toward high performance of microwave absorption. Nanotechnology Reviews, 2021, 10, 1-9.	5.8	23
4	Defect-Enhanced Electromagnetic Wave Absorption Property of Hierarchical Graphite Capsules@Helical Carbon Nanotube Hybrid Nanocomposites. ACS Applied Materials & Interfaces, 2021, 13, 28710-28720.	8.0	31
5	Gill inspired hierarchical wrinkles of reduced graphene oxide encapsulated carbon nanotubes with significantly boosted supercapacitor performance. Ceramics International, 2021, 47, 26712-26719.	4.8	7
6	Hierarchical porous carbon electrode materials for supercapacitor developed from wheat straw cellulosic foam. Renewable Energy, 2020, 149, 208-216.	8.9	105
7	Ultrafast physical bacterial inactivation and photocatalytic self-cleaning of ZnO nanoarrays for rapid and sustainable bactericidal applications. Science of the Total Environment, 2020, 738, 139714.	8.0	38
8	Excellent antibacterial activities in the dark of ZnO nanoflakes with oxygen vacancies on exposed {21Ì,,1Ì,,0} facets. Journal of Materials Chemistry A, 2020, 8, 11511-11514.	10.3	24
9	Superior Fe _{<i>x</i>} N electrocatalyst derived from 1,1′-diacetylferrocene for oxygen reduction reaction in alkaline and acidic media. Nanotechnology Reviews, 2020, 9, 843-852.	5.8	8
10	Fast Screening of Corrosion Trends in Metallic Glasses. ACS Combinatorial Science, 2019, 21, 666-674.	3.8	9
11	<i>Nepenthes</i> -inspired multifunctional nanoblades with mechanical bactericidal, self-cleaning and insect anti-adhesive characteristics. RSC Advances, 2019, 9, 27904-27910.	3.6	11
12	TBAH/Urea/H2O solvent for room temperature wet-spinning of cellulose and optimization of drawing process. Cellulose, 2019, 26, 6959-6977.	4.9	16
13	Underwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode. ACS Energy Letters, 2019, 4, 1034-1041.	17.4	25
14	Ultra-robust and high-toughness graphene oxide papers via synergistic strengthening by addition of carbon-nanotubes and copper ions. Carbon, 2019, 147, 490-500.	10.3	21
15	Hybridization-Induced Polarization of Graphene Sheets by Intercalation-Polymerized Polyaniline toward High Performance of Microwave Absorption. ACS Applied Materials & Interfaces, 2019, 11, 17100-17107.	8.0	64
16	Metallic Glass Nanostructures: Recent Advances in Metallic Glass Nanostructures: Synthesis Strategies and Electrocatalytic Applications (Adv. Mater. 7/2019). Advanced Materials, 2019, 31, 1970050.	21.0	7
17	Electric-field assisted growth and mechanical bactericidal performance of ZnO nanoarrays with gradient morphologies. Nanotechnology Reviews, 2019, 8, 315-326.	5.8	6
18	Recent Advances in Metallic Glass Nanostructures: Synthesis Strategies and Electrocatalytic Applications. Advanced Materials, 2019, 31, e1802120.	21.0	49

Jinyang Li

#	Article	IF	CITATIONS
19	Improved fracture toughness and ductility of PLA composites by incorporating a small amount of surface-modified helical carbon nanotubes. Composites Part B: Engineering, 2019, 162, 54-61.	12.0	49
20	Recent advances in surfaceâ€functionalised photosensitive antibacterials with synergistic effects. Biosurface and Biotribology, 2019, 5, 97-103.	1.5	2
21	High-Performance Capacitive Deionization via Manganese Oxide-Coated, Vertically Aligned Carbon Nanotubes. Environmental Science and Technology Letters, 2018, 5, 692-700.	8.7	69
22	Layerâ€byâ€Layer Assembly of Crossâ€Functional Semiâ€transparent MXeneâ€Carbon Nanotubes Composite Fil for Nextâ€Generation Electromagnetic Interference Shielding. Advanced Functional Materials, 2018, 28, 1803360.	ms 14.9	407
23	Carbonized Design of Hierarchical Porous Carbon/Fe ₃ O ₄ @Fe Derived from Loofah Sponge to Achieve Tunable High-Performance Microwave Absorption. ACS Sustainable Chemistry and Engineering, 2018, 6, 11801-11810.	6.7	256
24	Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering. Chemical Communications, 2017, 53, 8288-8291.	4.1	27
25	Light-trapping in polymer solar cells by processing with nanostructured diatomaceous earth. Organic Electronics, 2017, 51, 422-427.	2.6	10
26	Nanopatterned Bulk Metallic Glass Biosensors. ACS Sensors, 2017, 2, 1779-1787.	7.8	26
27	Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2017, 5, 67-72.	10.3	30
28	A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning. Nano Letters, 2016, 16, 4799-4806.	9.1	25
29	Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nature Communications, 2016, 7, 12925.	12.8	122
30	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. Advanced Materials, 2016, 28, 1940-1949.	21.0	71
31	Heterogeneous WS _{<i>x</i>} /WO ₃ Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries. ACS Nano, 2016, 10, 3257-3266.	14.6	121
32	Electrocatalysts: Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces (Adv. Mater. 10/2016). Advanced Materials, 2016, 28, 1902-1902.	21.0	0
33	Enhanced photoelectrochemical and sensing performance of novel TiO2 arrays to H2O2 detection. Sensors and Actuators B: Chemical, 2015, 211, 111-115.	7.8	29
34	Controlled Doping of Carbon Nanotubes with Metallocenes for Application in Hybrid Carbon Nanotube/Si Solar Cells. Nano Letters, 2014, 14, 3388-3394.	9.1	53
35	Halide promoted organotin-mediated carbohydrate benzylation: mechanism and application. Tetrahedron, 2013, 69, 2693-2700.	1.9	32
36	The interaction between desferrioxamine and hemin: A potential toxicological implication. Toxicology in Vitro, 2012, 26, 732-735.	2.4	11

#	Article	IF	CITATIONS
37	Nitrative and oxidative modifications of enolase are associated with iron in iron-overload rats and in vitro. Journal of Biological Inorganic Chemistry, 2011, 16, 481-490.	2.6	21