
Chao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160194/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unified failure criterion for asphalt binder under cyclic fatigue loading. Road Materials and Pavement Design, 2015, 16, 125-148.	4.0	110
2	Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil. Construction and Building Materials, 2018, 167, 348-358.	7.2	96
3	Identifying fatigue failure in asphalt binder time sweep tests. Construction and Building Materials, 2016, 121, 535-546.	7.2	77
4	A framework to characterize the healing potential of asphalt binder using the linear amplitude sweep test. Construction and Building Materials, 2017, 154, 771-779.	7.2	60
5	New innovations in pavement materials and engineering: A review on pavement engineering research 2021. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8, 815-999.	4.2	59
6	Experimental study on rheological characteristics and performance of high modulus asphalt binder with different modifiers. Construction and Building Materials, 2017, 155, 26-36.	7.2	52
7	Fatigue characterization of bio-modified asphalt binders under various laboratory aging conditions. Construction and Building Materials, 2019, 208, 686-696.	7.2	52
8	A new comprehensive analysis framework for fatigue characterization of asphalt binder using the Linear Amplitude Sweep test. Construction and Building Materials, 2018, 171, 1-12.	7.2	51
9	Fatigue performance characterization and prediction of asphalt binders using the linear amplitude sweep based viscoelastic continuum damage approach. International Journal of Fatigue, 2019, 119, 112-125.	5.7	47
10	Effect of Co-Production of Renewable Biomaterials on the Performance of Asphalt Binder in Macro and Micro Perspectives. Materials, 2018, 11, 244.	2.9	41
11	Comparison of the fatigue failure behaviour for asphalt binder using both cyclic and monotonic loading modes. Construction and Building Materials, 2017, 151, 767-774.	7.2	36
12	A chemo-rheological approach to the healing characteristics of asphalt binders under short- and long-term oxidative aging. Construction and Building Materials, 2019, 221, 553-561.	7.2	32
13	Fatigue and healing performance assessment of asphalt binder from rheological and chemical characteristics. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	3.1	30
14	Performance of bio-oil modified paving asphalt: chemical and rheological characterization. Materials and Structures/Materiaux Et Constructions, 2019, 52, 1.	3.1	30
15	Refining the Calculation Method for Fatigue Failure Criterion of Asphalt Binder from Linear Amplitude Sweep Test. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	28
16	Application of Time-Temperature Superposition Principle on Fatigue Failure Analysis of Asphalt Binder. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	22
17	Roles of aging and bio-oil regeneration on self-healing evolution behavior of asphalts within wide temperature range. Journal of Cleaner Production, 2021, 329, 129712.	9.3	19
18	A comparative study for fatigue characterization of asphalt binder using the linear amplitude sweep test. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	16

CHAO WANG

#	Article	IF	CITATIONS
19	Development of paving performance index system for selection of modified asphalt binder. Construction and Building Materials, 2017, 153, 695-703.	7.2	15
20	Physico-chemo-rheological characterization of neat and polymer-modified asphalt binders. Construction and Building Materials, 2019, 199, 471-482.	7.2	12
21	Intermediate and High Temperature Performance of Biobinders with Various Oxidative Aging. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	7
22	Investigating the Crack Initiation and Propagation of Asphalt Binder in Linear Amplitude Sweep Test. Journal of Materials in Civil Engineering, 2020, 32, .	2.9	7
23	Effect of Organic-Montmorillonite on rheological performance of Bio-Asphalt composites with various oxidative aging. Construction and Building Materials, 2022, 342, 127945.	7.2	6
24	Cohesive and adhesive healing evaluation of asphalt binders by means of the LASH and BBSH tests. Construction and Building Materials, 2021, 282, 122684.	7.2	4
25	Testing Methods to Assess Healing Potential of Bituminous Binders. RILEM Bookseries, 2022, , 55-62.	0.4	4
26	Oxidative Aging Effects on Damage-Healing Performance of Unmodified and Polymer Modified Asphalt Binders. Lecture Notes in Civil Engineering, 2020, , 395-403.	0.4	4
27	Estimating the Healing Characteristic of Asphalt Binder Using the LASH Test. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	4
28	Characterizing the Temperature Effects on Rutting and Fatigue Properties of Asphalt Binders Based on Time-Temperature Superposition Principle. Journal of Testing and Evaluation, 2019, 47, 2476-2496.	0.7	3
29	Study on the Mechanical Properties of Waste Cooking Oil Modified Asphalt Binder. RILEM Bookseries, 2019, , 215-219.	0.4	2
30	Characterizing Fatigue Failure Behavior of Modified Asphalt Binders from Linear Amplitude Sweep Test. DEStech Transactions on Materials Science and Engineering, 2017, , .	0.0	2
31	Rheological Properties of Asphalt Binder Compound Modified by Bio-oil and Organic Montmorillonite. RILEM Bookseries, 2022, , 1603-1609.	0.4	Ο