
Barbara S Beltz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160184/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Adult neurogenesis in crayfish: Identity and regulation of neural progenitors produced by the immune system. IScience, 2022, 25, 103993.	1.9	8
2	Insights into the genetic regulatory network underlying neurogenesis in the parthenogenetic marbled crayfish <i>Procambarus virginalis</i> . Developmental Neurobiology, 2021, 81, 939-974.	1.5	1
3	Adult neurogenesis in crayfish: Origin, expansion, and migration of neural progenitor lineages in a pseudostratified neuroepithelium. Journal of Comparative Neurology, 2020, 528, 1459-1485.	0.9	14
4	A Balancing Act: The Immune System Supports Neurodegeneration and Neurogenesis. Cellular and Molecular Neurobiology, 2020, 40, 967-989.	1.7	7
5	Adaptations to extreme conditions. ELife, 2019, 8, .	2.8	0
6	Comparison of ventral organ development across Pycnogonida (Arthropoda, Chelicerata) provides evidence for a plesiomorphic mode of late neurogenesis in sea spiders and myriapods. BMC Evolutionary Biology, 2018, 18, 47.	3.2	11
7	From Blood to Brain: Adult-Born Neurons in the Crayfish Brain Are the Progeny of Cells Generated by the Immune System. Frontiers in Neuroscience, 2017, 11, 662.	1.4	12
8	Adult Neurogenesis: Lessons from Crayfish and the Elephant in the Room. Brain, Behavior and Evolution, 2016, 87, 146-155.	0.9	5
9	Adult neural stem cells: Longâ€ŧerm selfâ€ŧenewal, replenishment by the immune system, or both?. BioEssays, 2015, 37, 495-501.	1.2	11
10	The 2014 FUN Achievement Award. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2015, 13, E11-3.	0.6	0
11	Birth, survival and differentiation of neurons in an adult crustacean brain. Developmental Neurobiology, 2014, 74, 602-615.	1.5	16
12	Cells from the Immune System Generate Adult-Born Neurons in Crayfish. Developmental Cell, 2014, 30, 322-333.	3.1	60
13	Adult Neurogenesis in the Crayfish Brain: The Hematopoietic Anterior Proliferation Center Has Direct Access to the Brain and Stem Cell Niche. Stem Cells and Development, 2013, 22, 1027-1041.	1.1	28
14	Firstâ€generation neuronal precursors in the crayfish brain are not selfâ€renewing. International Journal of Developmental Neuroscience, 2013, 31, 657-666.	0.7	14
15	Differential uptake of MRI contrast agents indicates charge-selective blood-brain interface in the crayfish. Cell and Tissue Research, 2012, 349, 493-503.	1.5	4
16	Neurogenesis in the central olfactory pathway of adult decapod crustaceans: development of the neurogenic niche in the brains of procambarid crayfish. Neural Development, 2012, 7, 1.	1.1	44
17	Adult Neurogenesis: Ultrastructure of a Neurogenic Niche and Neurovascular Relationships. PLoS ONE, 2012, 7, e39267.	1.1	22
18	Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection?. European Journal of Neuroscience, 2011, 34, 870-883.	1.2	31

BARBARA S BELTZ

#	Article	IF	CITATIONS
19	Adult neurogenesis: Examples from the decapod crustaceans and comparisons with mammals. Arthropod Structure and Development, 2011, 40, 258-275.	0.8	23
20	Primary Neuronal Precursors in Adult Crayfish Brain: Replenishment from a Non-neuronal Source. BMC Neuroscience, 2011, 12, 53.	0.8	29
21	5-HT receptors mediate lineage-dependent effects of serotonin on adult neurogenesis in Procambarus clarkii. Neural Development, 2011, 6, 2.	1.1	29
22	Environmental enrichment influences neuronal stem cells in the adult crayfish brain. Developmental Neurobiology, 2011, 71, 351-361.	1.5	17
23	Brain Photoreceptor Pathways Contributing to Circadian Rhythmicity in Crayfish. Chronobiology International, 2009, 26, 1136-1168.	0.9	2
24	Adult neurogenesis in the crayfish brain: Proliferation, migration, and possible origin of precursor cells. Developmental Neurobiology, 2009, 69, 415-436.	1.5	49
25	Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: homology to the insect circadian pacemaker system?. Cell and Tissue Research, 2009, 335, 417-429.	1.5	42
26	BRAIN PHOTORECEPTOR PATHWAYS CONTRIBUTING TO CIRCADIAN RHYTHMICITY IN CRAYFISH. Chronobiology International, 2009, 26, 1136-1168.	0.9	49
27	Omega-3 fatty acids upregulate adult neurogenesis. Neuroscience Letters, 2007, 415, 154-158.	1.0	174
28	Adult neurogenesis: A common strategy across diverse species. Journal of Comparative Neurology, 2007, 500, 574-584.	0.9	98
29	Adult neurogenesis and cell cycle regulation in the crustacean olfactory pathway: from glial precursors to differentiated neurons. Journal of Molecular Histology, 2007, 38, 527-542.	1.0	44
30	Magnetic resonance imaging at 9.4 T as a tool for studying neural anatomy in non-vertebrates. Journal of Neuroscience Methods, 2005, 146, 124-132.	1.3	15
31	Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in <i>Libinia emarginata</i> . European Journal of Neuroscience, 2005, 22, 2397-2402.	1.2	19
32	Newborn cells in the adult crayfish brain differentiate into distinct neuronal types. Journal of Neurobiology, 2005, 65, 157-170.	3.7	63
33	Integration and segregation of inputs to higher-order neuropils of the crayfish brain. Journal of Comparative Neurology, 2005, 481, 118-126.	0.9	54
34	Evolutionary changes in the olfactory projection neuron pathways of eumalacostracan crustaceans. Journal of Comparative Neurology, 2004, 470, 25-38.	0.9	58
35	Regulation of life-long neurogenesis in the decapod crustacean brain. Arthropod Structure and Development, 2003, 32, 39-60.	0.8	58
36	Ecological, evolutionary, and functional correlates of sensilla number and glomerular density in the olfactory system of decapod crustaceans. Journal of Comparative Neurology, 2003, 455, 260-269.	0.9	70

BARBARA S BELTZ

#	Article	IF	CITATIONS
37	Parasol cells of the hemiellipsoid body in the crayfishProcambarus clarkii: Dendritic branching patterns and functional implications. Journal of Comparative Neurology, 2003, 462, 168-179.	0.9	36
38	Serotonin in the developing stomatogastric system of the lobster,Homarus americanus. Journal of Neurobiology, 2003, 54, 380-392.	3.7	36
39	Circadian control of neurogenesis. Journal of Neurobiology, 2002, 53, 90-95.	3.7	75
40	Patterns of neurogenesis in the midbrain of embryonic lobsters differ from proliferation in the insect and the crustacean ventral nerve cord. Journal of Neurobiology, 2002, 53, 57-67.	3.7	20
41	Serotonin in Crustacean Systems: More than a Half Century of Fundamental Discoveries. , 2002, , 141-163.		1
42	Exploring neurogenesis in crustaceans. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2002, 1, A18-22.	0.6	1
43	Agonistic behavior in naÃ⁻ve juvenile lobsters depleted of serotonin by 5,7-dihydroxytryptamine. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2001, 187, 91-103.	0.7	38
44	Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans. Journal of Comparative Neurology, 2001, 441, 9-22.	0.9	80
45	Development and connectivity of olfactory pathways in the brain of the lobsterHomarus americanus. Journal of Comparative Neurology, 2001, 441, 23-43.	0.9	30
46	Effects of serotonin depletion on local interneurons in the developing olfactory pathway of lobsters. Journal of Neurobiology, 2001, 46, 193-205.	3.7	39
47	An unusual case of a mutant lobster embryo with double brain and double ventral nerve cord. Arthropod Structure and Development, 2000, 29, 95-99.	0.8	12
48	Serotonin DepletionIn VivoInhibits the Branching of Olfactory Projection Neurons in the Lobster Deutocerebrum. Journal of Neuroscience, 2000, 20, 7716-7721.	1.7	40
49	From Embryo to Adult: Persistent Neurogenesis and Apoptotic Cell Death Shape the Lobster Deutocerebrum. Journal of Neuroscience, 1999, 19, 3472-3485.	1.7	123
50	Crustacean hyperglycemic hormone in the lobster nervous system: Localization and release from cells in the subesophageal ganglion and thoracic second roots. Journal of Comparative Neurology, 1999, 414, 50-56.	0.9	98
51	Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. , 1999, 44, 105-120.		97
52	Developmental expression of the octopamine phenotype in lobsters,Homarus americanus. , 1996, 371, 3-14.		40
53	Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli. Journal of Comparative Neurology, 1995, 352, 263-279.	0.9	90
54	Development of the olfactory and accessory lobes in the american lobster: An allometric analysis and its implications for the deutocerebral structure of decapods. Journal of Comparative Neurology, 1995, 357, 433-445.	0.9	38

BARBARA S BELTZ

#	Article	IF	CITATIONS
55	Dopamine in the lobsterHomarus gammarus: II. Dopamine-immunoreactive neurons and development of the nervous system. Journal of Comparative Neurology, 1995, 362, 1-16.	0.9	59
56	Neurobiology and Neuroendocrinology. , 1995, , 267-289.		10
57	Dopamine in the lobsterHomarus gammarus. I. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivites in the nervous system of the juvenile. Journal of Comparative Neurology, 1994, 344, 455-469.	0.9	52
58	Comparative brain ontogeny of the crayfish and clawed lobster: Implications of direct and larval development. Journal of Comparative Neurology, 1993, 335, 343-354.	0.9	60
59	Aspects of the embryology and neural development of the American lobster. The Journal of Experimental Zoology, 1992, 261, 288-297.	1.4	49
60	SCPB- and FMRFamide-like immunoreactivities in lobster neurons: Colocalization of distinct peptides or colabeling of the same peptide(s)?. Journal of Comparative Neurology, 1991, 306, 417-424.	0.9	31
61	Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. Journal of Neurobiology, 1990, 21, 521-542.	3.7	85
62	New Dimensions in Neuroanatomy: Visualizing the Morphology, Physiology and Chemistry of Neurons. American Zoologist, 1990, 30, 513-529.	0.7	6
63	Stages in the Embryonic Development of the American Lobster with Special Emphasis on Its Nervous System. , 1990, , 530-536.		11
64	FMRFamidelike peptides ofhomarus americanus: Distribution, immunocytochemical mapping, and ultrastructural localization in terminal varicosities. Journal of Comparative Neurology, 1987, 266, 1-15.	0.9	112
65	Aminergic and Peptidergic Neuromodulation in Crustacea. Journal of Experimental Biology, 1986, 124, 115-141.	0.8	42
66	The well-modulated lobster: The roles of serotonin, octopamine, and proctolin in the lobster nervous system. Pesticide Biochemistry and Physiology, 1984, 22, 133-147.	1.6	33
67	Neurohormones and lobsters: biochemistry to behavior. Trends in Neurosciences, 1983, 6, 345-349.	4.2	31
68	An ultrastructural analysis of the salivary system of the terrestrial mollusc, Limax maximus. Tissue and Cell, 1979, 11, 31-50.	1.0	27