Qiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1601464/publications.pdf

Version: 2024-02-01

		28274	30087
161	11,710	55	103
papers	citations	h-index	g-index
192	192	192	10788
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Using carbon dioxide as a building block in organic synthesis. Nature Communications, 2015, 6, 5933.	12.8	1,581
2	Benzoxazole-Linked Ultrastable Covalent Organic Frameworks for Photocatalysis. Journal of the American Chemical Society, 2018, 140, 4623-4631.	13.7	555
3	Oxidative Carbonylation Reactions: Organometallic Compounds (RM) or Hydrocarbons (RH) as Nucleophiles. Angewandte Chemie - International Edition, 2011, 50, 10788-10799.	13.8	439
4	Carbonylations of Alkenes with CO Surrogates. Angewandte Chemie - International Edition, 2014, 53, 6310-6320.	13.8	376
5	Visibleâ€Lightâ€Mediated Decarboxylation/Oxidative Amidation of αâ€Keto Acids with Amines under Mild Reaction Conditions Using O ₂ . Angewandte Chemie - International Edition, 2014, 53, 502-506.	13.8	375
6	Hydride Transfer Reactions Catalyzed by Cobalt Complexes. Chemical Reviews, 2019, 119, 2876-2953.	47.7	320
7	Ligand-Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of <i>Z</i> - and <i>E-</i> Alkenes. Journal of the American Chemical Society, 2016, 138, 8588-8594.	13.7	269
8	Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. Journal of the American Chemical Society, 2017, 139, 11941-11948.	13.7	269
9	Recent advances in visible-light-driven organic reactions. National Science Review, 2017, 4, 359-380.	9.5	258
10	Reactivity and Mechanistic Insight into Visibleâ€Lightâ€Induced Aerobic Crossâ€Dehydrogenative Coupling Reaction by Organophotocatalysts. Chemistry - A European Journal, 2012, 18, 620-627.	3.3	254
11	A Cascade Cross-Coupling Hydrogen Evolution Reaction by Visible Light Catalysis. Journal of the American Chemical Society, 2013, 135, 19052-19055.	13.7	250
12	Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nature Communications, 2014, 5, 3091.	12.8	185
13	Revealing a Second Transmetalation Step in the Negishi Coupling and Its Competition with Reductive Elimination: Improvement in the Interpretation of the Mechanism of Biaryl Syntheses. Journal of the American Chemical Society, 2009, 131, 10201-10210.	13.7	179
14	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	13.8	165
15	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. Nature Communications, 2013, 4, 2695.	12.8	159
16	Palladium-Catalyzed Carbonylative Transformation of C(sp ³)–X Bonds. ACS Catalysis, 2014, 4, 2977-2989.	11.2	154
17	Roomâ€Temperature Copperâ€Catalyzed Oxidation of Electronâ€Deficient Arenes and Heteroarenes Using Air. Angewandte Chemie - International Edition, 2012, 51, 4666-4670.	13.8	151
18	Visibleâ€Lightâ€Driven, Copperâ€Catalyzed Decarboxylative C(sp ³)â^'H Alkylation of Glycine and Peptides. Angewandte Chemie - International Edition, 2018, 57, 15841-15846.	13.8	148

#	Article	IF	CITATIONS
19	Mild and Selective Cobaltâ€Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie - International Edition, 2016, 55, 14653-14657.	13.8	145
20	Review of Current Strategies for Delivering Alzheimer's Disease Drugs across the Blood-Brain Barrier. International Journal of Molecular Sciences, 2019, 20, 381.	4.1	145
21	A Highly Efficient and Selective Aerobic Crossâ€Dehydrogenativeâ€Coupling Reaction Photocatalyzed by a Platinum(II) Terpyridyl Complex. Chemistry - A European Journal, 2013, 19, 6443-6450.	3.3	144
22	Radical-Scavenging Activity and Mechanism of Resveratrol-Oriented Analogues: Influence of the Solvent, Radical, and Substitution. Journal of Organic Chemistry, 2009, 74, 5025-5031.	3.2	128
23	Superior Effect of a Ï€-Acceptor Ligand (Phosphineâ^'Electron-Deficient Olefin Ligand) in the Negishi Coupling Involving Alkylzinc Reagents. Organic Letters, 2007, 9, 4571-4574.	4.6	122
24	Visible-Light-Driven Difluoroacetamidation of Unactive Arenes and Heteroarenes by Direct C–H Functionalization at Room Temperature. Organic Letters, 2014, 16, 5842-5845.	4.6	121
25	Visible-light-mediated aerobic selenation of (hetero)arenes with diselenides. Green Chemistry, 2017, 19, 5559-5563.	9.0	120
26	Regioselective thiocyanation of aromatic and heteroaromatic compounds using ammonium thiocyanate and oxone. Tetrahedron Letters, 2005, 46, 5831-5834.	1.4	112
27	Visibleâ€Light Photocatalytic Radical Alkenylation of αâ€Carbonyl Alkyl Bromides and Benzyl Bromides. Chemistry - A European Journal, 2013, 19, 5120-5126.	3.3	109
28	Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application. Journal of the American Chemical Society, 2019, 141, 17337-17349.	13.7	102
29	Dual-Functional Chiral Cu-Catalyst-Induced Photoredox Asymmetric Cyanofluoroalkylation of Alkenes. ACS Catalysis, 2019, 9, 4470-4476.	11.2	102
30	Cu-Catalyzed Redox-Neutral Ring Cleavage of Cycloketone <i>O</i> -Acyl Oximes: Chemodivergent Access to Distal Oxygenated Nitriles. Organic Letters, 2018, 20, 409-412.	4.6	100
31	Cobalt-Catalyzed Regioselective Olefin Isomerization Under Kinetic Control. Journal of the American Chemical Society, 2018, 140, 6873-6882.	13.7	99
32	Oxidative Catalytic Coupling Reactions: Selective Formation of Cī£¿C and Cī£¿X Bonds Using Radical Processes. Angewandte Chemie - International Edition, 2013, 52, 13871-13873.	13.8	97
33	A Novel Intermolecular Synthesis of \hat{I}^3 -Lactones via Visible-Light Photoredox Catalysis. Organic Letters, 2013, 15, 6054-6057.	4.6	95
34	Green synthesis of tannin-hexamethylendiamine based adsorbents for efficient removal of Cr(VI). Journal of Hazardous Materials, 2018, 352, 27-35.	12.4	94
35	Manganeseâ€Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angewandte Chemie - International Edition, 2021, 60, 5108-5113.	13.8	93
36	Palladiumâ€Catalyzed Aerobic Oxidative Carbonylation of Arylboronate Esters under Mild Conditions. Angewandte Chemie - International Edition, 2010, 49, 3371-3374.	13.8	88

#	Article	IF	CITATIONS
37	Ligand-Controlled Palladium-Catalyzed Alkoxycarbonylation of Allenes: Regioselective Synthesis of \hat{l}_{\pm},\hat{l}^2 -and \hat{l}^2,\hat{l}^3 -Unsaturated Esters. Journal of the American Chemical Society, 2015, 137, 8556-8563.	13.7	84
38	Domino Catalysis: Palladiumâ€Catalyzed Carbonylation of Allylic Alcohols to β,γâ€Unsaturated Esters. Angewandte Chemie - International Edition, 2013, 52, 8064-8068.	13.8	80
39	Development of a Ruthenium/Phosphite Catalyst System for Domino Hydroformylation–Reduction of Olefins with Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 6888-6894.	3.3	79
40	Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation. Nature Communications, 2020, 11, 591.	12.8	75
41	Copper(<scp>i</scp>)-catalyzed enantioselective hydroboration of cyclopropenes: facile synthesis of optically active cyclopropylboronates. Organic Chemistry Frontiers, 2014, 1, 1116-1122.	4.5	74
42	A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates. Organic Chemistry Frontiers, 2018, 5, 1248-1256.	4.5	72
43	Regioselective Pdâ€Catalyzed Methoxycarbonylation of Alkenes Using both Paraformaldehyde and Methanol as CO Surrogates. Angewandte Chemie - International Edition, 2015, 54, 4493-4497.	13.8	71
44	Direct Câ \in "H difluoromethylenephosphonation of arenes and heteroarenes with bromodifluoromethyl phosphonate via visible-light photocatalysis. Chemical Communications, 2014, 50, 15916-15919.	4.1	70
45	Metalâ€Free Desulfonylation Reaction Through Visibleâ€Light Photoredox Catalysis. European Journal of Organic Chemistry, 2013, 2013, 7528-7532.	2.4	67
46	Towards a Sustainable Synthesis of Formate Salts: Combined Catalytic Methanol Dehydrogenation and Bicarbonate Hydrogenation. Angewandte Chemie - International Edition, 2014, 53, 7085-7088.	13.8	67
47	(E)- \hat{l} ±, \hat{l} 2-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation. Chemical Communications, 2015, 51, 3247-3250.	4.1	67
48	Visible-Light-Driven Synthesis of 4-Alkyl/Aryl-2-Aminothiazoles Promoted by In Situ Generated Copper Photocatalyst. ACS Catalysis, 2017, 7, 7941-7945.	11.2	67
49	Manganeseâ€Catalyzed Dualâ€Deoxygenative Coupling of Primary Alcohols with 2â€Arylethanols. Angewandte Chemie - International Edition, 2018, 57, 15143-15147.	13.8	66
50	Base-Metal-Catalyzed Olefin Isomerization Reactions. Synthesis, 2019, 51, 1293-1310.	2.3	64
51	Graphene-Supported RuO ₂ Nanoparticles for Efficient Aerobic Cross-Dehydrogenative Coupling Reaction in Water. Organic Letters, 2012, 14, 5992-5995.	4.6	62
52	Synthesis of 2-substituted pyrimidines and benzoxazoles via a visible-light-driven organocatalytic aerobic oxidation: enhancement of the reaction rate and selectivity by a base. Green Chemistry, 2014, 16, 3752.	9.0	62
53	Visible-light-promoted aerobic metal-free aminothiocyanation of activated ketones. Green Chemistry, 2018, 20, 5464-5468.	9.0	61
54	Pdâ€Catalyzed Direct and Selective CH Functionalization: C3â€Acetoxylation of Indoles. Chemistry - A European Journal, 2011, 17, 2353-2357.	3.3	57

#	Article	IF	CITATIONS
55	Mechanistic insight into cobalt-catalyzed stereodivergent semihydrogenation of alkynes: The story of selectivity control. Journal of Catalysis, 2018, 362, 25-34.	6.2	55
56	Preparation of Heterocycles via Visible-Light-Driven Aerobic Selenation of Olefins with Diselenides. Organic Letters, 2019, 21, 885-889.	4.6	55
57	Aerobic Oxidative Coupling of Resveratrol and its Analogues by Visible Light Using Mesoporous Graphitic Carbon Nitride (mpg ₃ N ₄) as a Bioinspired Catalyst. Chemistry - A European Journal, 2014, 20, 678-682.	3.3	53
58	A Practical and Stereoselective In Situ NHC-Cobalt Catalytic System for Hydrogenation of Ketones and Aldehydes. CheM, 2019, 5, 1552-1566.	11.7	51
59	DDQâ€Catalyzed Oxidative CO Coupling Of sp ³ CH Bonds With Carboxylic Acids. ChemSusChem, 2012, 5, 2143-2146.	6.8	49
60	Phosphine―and Hydrogenâ€Free: Highly Regioselective Rutheniumâ€Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie - International Edition, 2014, 53, 7320-7323.	13.8	48
61	Visibleâ€Lightâ€Driven Intermolecular [2+2] Cycloadditions between Coumarinâ€3â€Carboxylates and Acrylamide Analogs. Chemistry - A European Journal, 2015, 21, 10326-10329.	3 . 3	48
62	A trans diacyloxylation of indoles. Chemical Communications, 2012, 48, 3239.	4.1	46
63	Preparation of 6â€Difluoromethylphosphonated Phenanthridines by Visibleâ€Lightâ€Driven Radical Cyclization of 2â€Isocyanobiphenyls. European Journal of Organic Chemistry, 2015, 2015, 6817-6821.	2.4	44
64	Manganeseâ€Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. ChemSusChem, 2019, 12, 3069-3072.	6.8	43
65	Combining visible light catalysis and transfer hydrogenation for in situ efficient and selective semihydrogenation of alkynes under ambient conditions. Chemical Communications, 2016, 52, 1800-1803.	4.1	42
66	Preparation of \hat{l}_{\pm} -Acyloxy Ketones via Visible-Light-Driven Aerobic Oxo-Acyloxylation of Olefins with Carboxylic Acids. Organic Letters, 2016, 18, 5256-5259.	4.6	40
67	Manganeseâ€Catalyzed Asymmetric Hydrogenation of <i>3H</i> â€Indoles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
68	Hydrogenation of olefins using Hantzsch ester catalyzed by palladium on carbon. Tetrahedron Letters, 2009, 50, 1026-1028.	1.4	36
69	Photo-Induced Radical Cyclization of Aromatic Halides with Sodium Borohydride. Synlett, 2005, 2005, 2248-2250.	1.8	35
70	Facile and Efficient Synthesis of Benzoxazoles and Benzimidazoles: The Application of Hantzsch Ester 1,4â€Dihydropyridines in Reductive Cyclization Reactions. European Journal of Organic Chemistry, 2010, 2010, 6627-6632.	2.4	34
71	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	11.2	34
72	Twofold Interpenetrated 2D MOF Nanosheets Generated by an Instant In Situ Exfoliation Method: Morphology Control and Fluorescent Sensing. Advanced Materials Interfaces, 2020, 7, 2000813.	3.7	33

#	Article	IF	CITATIONS
73	Mechanism and Improved Dissolution of Glycyrrhetinic Acid Solid Dispersion by Alkalizers. Pharmaceutics, 2020, 12, 82.	4.5	33
74	Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–Büchi Reaction and Aza-Photocyclization. ACS Catalysis, 2021, 11, 446-455.	11.2	33
75	Facile Photoreduction of Graphene Oxide by an NAD(P)H Model: Hantzsch 1,4-Dihydropyridine. Langmuir, 2012, 28, 8224-8229.	3.5	32
76	Developments in the construction of cyclopropanols. Organic and Biomolecular Chemistry, 2020, 18, 191-204.	2.8	32
77	Photochemical Preparation of Pyrimidin-2(1H)-ones by Rhenium(I) Complexes with Visible Light. Journal of Organic Chemistry, 2011, 76, 1444-1447.	3.2	31
78	Photochemical Desulfonylation ofN-Tosyl Amides by 2-Phenyl-N,N′-ÂÐimethylbenzimidazoline (PDMBI). Synlett, 2005, 2005, 2510-2512.	1.8	30
79	Eosin Y- and Copper-Catalyzed Dark Reaction To Construct Ene-Î ³ -Lactams. Organic Letters, 2018, 20, 7220-7224.	4.6	29
80	Thiocyanate radical mediated dehydration of aldoximes with visible light and air. Chemical Communications, 2019, 55, 9701-9704.	4.1	28
81	Transformation of î³-valerolactone into 1,4-pentanediol and 2-methyltetrahydrofuran over Zn-promoted Cu/Al ₂ O ₃ catalysts. Catalysis Science and Technology, 2020, 10, 4412-4423.	4.1	28
82	Metallaphotoredox Dearomatization of Indoles by a Benzamide-Empowered [4 + 2] Annulation: Facile Access to Indolo[2,3-c]isoquinolin-5-ones. ACS Catalysis, 2021, 11, 5054-5060.	11.2	28
83	Rutheniumâ€Catalyzed Alkoxycarbonylation of Alkenes with Paraformaldehyde as a Carbon Monoxide Substitute. ChemCatChem, 2014, 6, 2805-2809.	3.7	27
84	NH ₄ I-Promoted and H ₂ O-Controlled Intermolecular Bis-sulfenylation and Hydroxysulfenylation of Alkenes via a Radical Process. Journal of Organic Chemistry, 2019, 84, 8750-8758.	3.2	27
85	Migratory Hydrogenation of Terminal Alkynes by Base/Cobalt Relay Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6750-6755.	13.8	27
86	An Electronâ€Deficient Diene as Ligand for Palladiumâ€Catalyzed Crossâ€Coupling Reactions: An Efficient Alkylation of Aryl Iodides by Primary and Secondary Alkylzinc Reagents. Advanced Synthesis and Catalysis, 2008, 350, 1349-1354.	4.3	26
87	A Convenient Synthesis and the Asymmetric Hydrogenation of <i>N</i> -Phthaloyl Dehydroamino Acid Esters. Organic Letters, 2008, 10, 3033-3036.	4.6	26
88	Photooxidation of Hantzsch 1,4-dihydropyridines by molecular oxygen. Science Bulletin, 2010, 55, 2855-2858.	1.7	26
89	Metalâ€Freeâ€Mediated Oxidation Aromatization of 1,4â€Dihydropyridines to Pyridines Using Visible Light and Air. Chinese Journal of Chemistry, 2014, 32, 1245-1250.	4.9	26
90	Ruthenium-catalyzed alkoxycarbonylation of alkenes using carbon monoxide. Organic Chemistry Frontiers, 2015, 2, 771-774.	4.5	26

#	Article	IF	Citations
91	Visible-light-enabled aerobic synthesis of benzoin bis-ethers from alkynes and alcohols. Green Chemistry, 2018, 20, 5479-5483.	9.0	26
92	Confining perovskite quantum dots in the pores of a covalent-organic framework: quantum confinement- and passivation-enhanced light-harvesting and photocatalysis. Journal of Materials Chemistry A, 2021, 9, 24365-24373.	10.3	26
93	Cobalt-Catalyzed Desymmetric Isomerization of Exocyclic Olefins. Journal of the American Chemical Society, 2021, 143, 20633-20639.	13.7	26
94	Rh-catalyzed highly enantioselective formation of functionalized cyclopentanes and cyclopentanones. Organic and Biomolecular Chemistry, 2007, 5, 3531.	2.8	25
95	External oxidant-free oxidation/[3+2] cycloaddition/aromatization cascade: electrochemical synthesis of polycyclic N-heterocycles. Chemical Communications, 2019, 55, 8398-8401.	4.1	24
96	Highly regioselective osmium-catalyzed hydroformylation. Chemical Communications, 2015, 51, 3080-3082.	4.1	23
97	Visible-light photoredox intramolecular difluoroacetamidation: facile synthesis of 3,3-difluoro-2-oxindoles from bromodifluoroacetamides. Organic and Biomolecular Chemistry, 2016, 14, 2195-2199.	2.8	23
98	General and Phosphineâ€Free Cobaltâ€Catalyzed Hydrogenation of Esters to Alcohols. Chinese Journal of Chemistry, 2019, 37, 1125-1130.	4.9	23
99	Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Delivery and Translational Research, 2021, 11, 131-141.	5.8	23
100	Manganeseâ€Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angewandte Chemie, 2021, 133, 5168-5173.	2.0	23
101	Self-assembled CoTiO ₃ nanorods with controllable oxygen vacancies for the efficient photochemical reduction of CO ₂ to CO. Catalysis Science and Technology, 2020, 10, 2040-2046.	4.1	22
102	Reduction of N-(alkoxy(aryl)methyl)benzamide Compounds by a Hantzsch Ester 1,4-Dihydropyridine Using Pd/C as a Catalyst. Catalysis Letters, 2008, 126, 361-366.	2.6	20
103	Using Aqueous Ammonia in Hydroaminomethylation Reactions: Rutheniumâ€Catalyzed Synthesis of Tertiary Amines. ChemSusChem, 2014, 7, 3260-3263.	6.8	20
104	Autoxidation/Aldol Tandem Reaction of 2â€Oxindoles with Ketones: A Green Approach for the Synthesis of 3â€Hydroxyâ€2â€Oxindoles. Chemistry - A European Journal, 2016, 22, 2595-2598.	3.3	20
105	Photochemical reductive desulfonylation of \hat{l}^2 -ketosulfones by ascorbic acid. Tetrahedron Letters, 2006, 47, 1805-1807.	1.4	19
106	Quantitative and qualitative determination of LiuweiDihuang preparations by ultra high performance liquid chromatography in dualâ€wavelength fingerprinting mode and random forest. Journal of Separation Science, 2015, 38, 3720-3726.	2.5	19
107	<i>N</i> â€Methylation of <i>N</i> â€Methylaniline with Carbon Dioxide and Molecular Hydrogen over a Heterogeneous Nonâ€Noble Metal Cu/TiO ₂ Catalyst. ChemCatChem, 2019, 11, 3919-3926.	3.7	19
108	Highly stereoselective syn-ring opening of enantiopure epoxides with nitric oxide. Tetrahedron Letters, 2007, 48, 1653-1656.	1.4	18

#	Article	IF	CITATIONS
109	Homocoupling of 3-Halooxindole via Visible-Light Photocatalysis: A Mild Access to 3,3′-Bioxindoles. Journal of Organic Chemistry, 2016, 81, 7172-7181.	3.2	18
110	Meyer–Schuster-Type Rearrangement of Propargylic Alcohols into α-Selenoenals and -enones with Diselenides. Journal of Organic Chemistry, 2021, 86, 5274-5283.	3.2	18
111	Antioxidant neolignan and phenolic glucosides from the fruit of Euterpe oleracea. Fìtoterapìâ, 2014, 99, 178-183.	2.2	17
112	Domino Radical Addition/Oxidation Sequence with Photocatalysis: Oneâ€Pot Synthesis of Polysubstituted Furans from αâ€Chloroâ€Alkyl Ketones and Styrenes. Chemistry - A European Journal, 2016, 22, 13794-13798.	3.3	17
113	Synthesis of chroman-4-one and indanone derivatives via silver catalyzed radical ring opening/coupling/cyclization cascade. Tetrahedron, 2019, 75, 130490.	1.9	17
114	Hydrodeoxygenation of ethyl stearate over Re-promoted Ru/TiO ₂ catalysts: rate enhancement and selectivity control by the addition of Re. Catalysis Science and Technology, 2020, 10, 222-230.	4.1	17
115	Bidentate NHC-Cobalt Catalysts for the Hydrogenation of Hindered Alkenes. Organometallics, 2020, 39, 3082-3087.	2.3	17
116	Metalâ€Free Direct C–H βâ€Carbonyl Alkylation of Heteroarenes with Cyclopropanols Mediated by K ₂ S ₂ O ₈ . European Journal of Organic Chemistry, 2020, 2020, 2600-2604.	2.4	17
117	Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. Green Chemistry, 2020, 22, 1630-1638.	9.0	17
118	Synthesis of 4-Oxoisoxazoline <i>N</i> -Oxides via Pd-Catalyzed Cyclization of Propargylic Alcohols with <i>tert</i> -Butyl Nitrite. Organic Letters, 2019, 21, 3131-3135.	4.6	16
119	Using Methanol as a Formaldehyde Surrogate for Sustainable Synthesis of <scp><i>N</i>â€Heterocycles</scp> via <scp>Manganeseâ€Catalyzed</scp> Dehydrogenative Cyclization. Chinese Journal of Chemistry, 2022, 40, 1137-1143.	4.9	16
120	Tailoring 3,3′â€Đihydroxyisorenieratene to Hydroxystilbene: Finding a Resveratrol Analogue with Increased Antiproliferation Activity and Cell Selectivity. Chemistry - A European Journal, 2014, 20, 8904-8908.	3.3	15
121	A tunable single-polarization photonic crystal fiber filter based on surface plasmon resonance. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	14
122	Access to 4-substituted isothiazoles through three-component cascade annulation and their application in $C\hat{a}\in H$ activation. Chemical Communications, 2020, 56, 5763-5766.	4.1	14
123	Synthesis of Symmetrical <i>N,N</i> ′-Alkylidene Bisamides Using Zinc Chloride as a Lewis Acid Catalyst. Advanced Materials Research, 0, 441, 421-425.	0.3	13
124	Ruthenium(ii)/acetate catalyzed intermolecular dehydrogenative ortho C–H silylation of 2-aryl N-containing heterocycles. Organic and Biomolecular Chemistry, 2019, 17, 4115-4120.	2.8	13
125	Manganese-Catalyzed Dehydrogenative/Deoxygenative Coupling of Alcohols. Synlett, 2020, 31, 1464-1473.	1.8	13
126	Controllable synthesis of 2- and 3-aryl-benzomorpholines from 2-aminophenols and 4-vinylphenols. Chemical Communications, 2020, 56, 7941-7944.	4.1	12

#	Article	IF	Citations
127	Metal-free synthesis of phosphinoylchroman-4-ones via a radical phosphinoylation–cyclization cascade mediated by K ₂ S ₂ O ₈ . Beilstein Journal of Organic Chemistry, 2020, 16, 1974-1982.	2.2	11
128	Synthesis of Benzobicycloheptanones via the Trap of Photogenerated Ketene Methide Intermediate with Olefins. Journal of Organic Chemistry, 2014, 79, 8143-8155.	3.2	10
129	Electrochemical one-pot synthesis of five-membered azaheterocycles <i>via</i> [4 + 1] cyclization. Organic Chemistry Frontiers, 2020, 7, 3912-3917.	4.5	10
130	Metal-Free Oxidative Esterification of Ketones and Potassium Xanthates: Selective Synthesis of \hat{l} ±-Ketoesters and Esters. Journal of Organic Chemistry, 2020, 85, 5220-5230.	3.2	10
131	Preparation of Oxazole Acetals from <i>N</i> â€Propargylamides Enabled by Visibleâ€Lightâ€Promoted Seleniumâ€Ï€â€Acid Catalysis. ChemPhotoChem, 2021, 5, 240-244.	3.0	10
132	Controllable $\langle i \rangle Z \langle i \rangle \langle i \rangle E \langle i \rangle$ -selective synthesis of $\hat{I}\pm$ -amino-ketoximes from $\langle i \rangle N \langle i \rangle$ -nitrososulfonamides and aryl alkenes under neutral conditions. Organic Chemistry Frontiers, 2021, 8, 5785-5792.	4.5	10
133	Synthesis of Deuterated (<i>E</i>)-Alkene through Xanthate-Mediated Hydrogen–Deuterium Exchange Reactions. Organic Letters, 2021, 23, 7412-7417.	4.6	10
134	Synthesis of Substituted Thiophenes through Dehydration and Heterocyclization of Alkynols. Journal of Organic Chemistry, 2022, 87, 3555-3566.	3.2	10
135	Bioinspired Selective Synthesis of Heterodimer 8–5′ or 8– <i>O</i> i>–4′ Neolignan Analogs. Organic Letters, 2021, 23, 2816-2820.	4.6	9
136	Regioselective N-nitrosation of dihydropyrimidinones with nitric oxide. Tetrahedron Letters, 2008, 49, 1220-1222.	1.4	8
137	Determination of Fulvestrant in Rat Plasma by LC–MS–MS: Application to a Pharmacokinetic Study. Chromatographia, 2011, 74, 227-234.	1.3	8
138	A new sucrosephenylpropanoid ester from <i>Polygonum pubescens</i> Blume. Natural Product Research, 2017, 31, 1725-1732.	1.8	8
139	Synthesis of 1,3-diselenyl-dihydroisobenzofurans <i>via</i> electrochemical radical selenylation with substituted <i>o</i> -divinylbenzenes and diselenides. Organic and Biomolecular Chemistry, 2022, 20, 2813-2817.	2.8	8
140	A Metal-Free Catalytic Aerobic Aromatization of Hantzsch 1,4-DihydroÂpyridines byN-Hydroxyphthalimide. Synlett, 2005, 2005, 2333-2334.	1.8	7
141	Synthesis of Oxatricyclooctanes via Photoinduced Intramolecular Oxa-[4+2] Cycloaddition of Substituted <i>o</i> -Divinylbenzenes. Journal of Organic Chemistry, 2017, 82, 7856-7868.	3.2	7
142	Preparation and characterization of wet-milled cyclovirobuxine D nanosuspensions. Journal of Thermal Analysis and Calorimetry, 2020, 139, 1959-1970.	3.6	7
143	Microwave-assisted one-pot synthesis of 3-substituted-3,4-dihydrocoumarins via tendem Konevenagel and Hantzsch reactions. Chinese Chemical Letters, 2009, 20, 25-28.	9.0	6
144	Selective Reduction of Nitroarenes by a Hantzsch 1,4-Dihydropyridine: A Facile and Efficient Approach to Substituted Quinolines. Synthesis, 2011, 2011, 2066-2072.	2.3	6

#	Article	IF	Citations
145	Synthesis of 2â€Aminoindole Derivatives with Hantzsch Ester Catalyzed by Pd/C. Chinese Journal of Chemistry, 2013, 31, 263-266.	4.9	6
146	Manganeseâ€Catalyzed Asymmetric Hydrogenation of <i>3H</i> â€Indoles. Angewandte Chemie, 2022, 134, .	2.0	6
147	Photoinduced Intermolecular [4+2] Cycloaddition Reaction for Construction of Benzobicyclo[2.2.2]octane Skeletons. Journal of Organic Chemistry, 2017, 82, 1389-1402.	3.2	5
148	Selective synthesis of pyridyl pyridones and oxydipyridines by transition-metal-free hydroxylation and arylation of 2-fluoropyridine derivatives. Organic and Biomolecular Chemistry, 2020, 18, 1185-1193.	2.8	5
149	Highly Efficient Visible-Light-Driven [2+2] Cycloaddition of Maleimides to Alkenes and Alkynes for the Synthesis of 3-AzaÂbicyclo[3.2.0]heptane-Fused Scaffolds. Synthesis, 0, , .	2.3	5
150	Photoacid-Enabled Synthesis of Indanes via Formal [3 + 2] Cycloaddition of Benzyl Alcohols with Olefins. Organic Letters, 2022, 24, 2040-2044.	4.6	5
151	Reactions of Propargylic Alcohols with Nitric Oxide. Journal of Chemical Research, 2006, 2006, 545-546.	1.3	4
152	First Use of HEH in Oxazine Synthesis: Hydroxy-Substituted 2H-1,4-Benzoxazine Derivatives. Synlett, 2009, 2009, 3283-3286.	1.8	4
153	Highly Selective Semihydrogenation of Phenylalkynes to (Z)-Styrenes Using Hantzsch Ester 1,4-Dihydropyridine Catalyzed by Pd/C. Synlett, 2010, 2010, 1870-1872.	1.8	4
154	Cobalt/Lewis acid cooperative catalysis for reductive etherification of ketones and aldehydes with alcohols. Chem Catalysis, 2022, 2, 883-897.	6.1	4
155	Neural network approach to a colorimetric value transform based on a large-scale spectral dataset. Coloration Technology, 2017, 133, 73-80.	1.5	3
156	Fourth-Generation Oxidative Cross-Coupling Reactions. Lecture Notes in Quantum Chemistry II, 2019, , 155-192.	0.3	3
157	Study on the stabilization mechanisms of wet-milled cepharanthine nanosuspensions using systematical characterization. Drug Development and Industrial Pharmacy, 2020, 46, 200-208.	2.0	3
158	Visible-Light-Driven Aromatization Hydrogen Evolution by Organic Dye and Ni Complex. Acta Chimica Sinica, 2017, 75, 119.	1.4	1
159	Regioselective Thiocyanation of Aromatic and Heteroaromatic Compounds Using Ammonium Thiocyanate and Oxone ChemInform, 2005, 36, no.	0.0	0
160	Selective Reduction of the Exocyclic Double Bond of Isoxazolones and Pyrazolones by Hantzsch 1,4-Dihydropyridine. Synlett, 2005, 2005, 1579-1580.	1.8	0
161	Photo-Induced Radical Cyclization of Aromatic Halides with Sodium Borohydride ChemInform, 2006, 37, no.	0.0	0