
Zhuo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1601441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polyethylenimine-aminated polyvinyl chloride fiber for adsorption of reactive dyes from single and binary component systems: Adsorption kinetics and isotherm studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128983.	2.3	17
2	Preparation of adsorptive polyethyleneimine/polyvinyl chloride electrospun nanofiber membrane: Characterization and application. Journal of Environmental Management, 2022, 316, 115155.	3.8	10
3	Na+ pre-intercalated Na0.11MnO2 on three-dimensional graphene as cathode for aqueous zinc ion hybrid supercapacitor with high energy density. Carbon, 2022, 198, 46-56.	5.4	31
4	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 9610-9617.	7.2	90
5	Towards Highâ€Performance Zincâ€Based Hybrid Supercapacitors via Macroporesâ€Based Charge Storage in Organic Electrolytes. Angewandte Chemie, 2021, 133, 9696-9703.	1.6	5
6	Adsorption and Desorption Properties of Polyethylenimine/Polyvinyl Chloride Cross-Linked Fiber for the Treatment of Azo Dye Reactive Yellow 2. Molecules, 2021, 26, 1519.	1.7	8
7	Selective adsorption of palladium(II) from aqueous solution using epichlorohydrin crosslinked polyethylenimine-chitin adsorbent: Batch and column studies. Journal of Environmental Chemical Engineering, 2021, 9, 105058.	3.3	17
8	Recovery of Pd(II) from Aqueous Solution by Polyethylenimine-Crosslinked Chitin Biosorbent. Coatings, 2021, 11, 593.	1.2	3
9	Polyethylenimine-crosslinked chitin biosorbent for efficient recovery of Pd(II) from acidic solution: Characterization and adsorption mechanism. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100091.	1.6	1
10	<i>In situ</i> structural evolution of the multi-site alloy electrocatalyst to manipulate the intermediate for enhanced water oxidation reaction. Energy and Environmental Science, 2020, 13, 2200-2208.	15.6	101
11	Zinc–Organic Battery with a Wide Operationâ€Temperature Window from â^'70 to 150 °C. Angewandte Chemie - International Edition, 2020, 59, 14577-14583.	7.2	158
12	Zinc–Organic Battery with a Wide Operationâ€Temperature Window from â~'70 to 150 °C. Angewandte Chemie, 2020, 132, 14685-14691.	1.6	49
13	Binding Zinc Ions by Carboxyl Groups from Adjacent Molecules toward Longâ€Life Aqueous Zinc–Organic Batteries. Advanced Materials, 2020, 32, e2000338.	11.1	215
14	Energizing hybrid supercapacitors by using Mn ²⁺ -based active electrolyte. Journal of Materials Chemistry A, 2020, 8, 15051-15057.	5.2	13
15	An organic/inorganic electrode-based hydronium-ion battery. Nature Communications, 2020, 11, 959.	5.8	157
16	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Znâ€Based Batteries. Advanced Functional Materials, 2020, 30, 1908528.	7.8	523
17	Solid-State Proton Battery Operated at Ultralow Temperature. ACS Energy Letters, 2020, 5, 685-691.	8.8	125
18	Boosting Polysulfide Redox Kinetics by Grapheneâ€Supported Ni Nanoparticles with Carbon Coating. Advanced Energy Materials, 2020, 10, 2000907.	10.2	89

Zhuo Wang

#	Article	IF	CITATIONS
19	First Principle Material Genome Approach for All Solidâ€State Batteries. Energy and Environmental Materials, 2019, 2, 234-250.	7.3	69
20	Polyethylenimine-crosslinked chitin flake as a biosorbent for removal of Acid Blue 25. Korean Journal of Chemical Engineering, 2019, 36, 1455-1465.	1.2	17
21	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 22930-22938.	5.2	17
22	High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Science China Chemistry, 2019, 62, 118-125.	4.2	13
23	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule, 2019, 3, 1289-1300.	11.7	672
24	Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nature Communications, 2018, 9, 2906.	5.8	1,036
25	Removal of NaCl from saltwater solutions using micro/mesoporous carbon sheets derived from watermelon peel via deionization capacitors. RSC Advances, 2017, 7, 4297-4305.	1.7	64
26	<i>In Situ</i> Expanding Pores of Dodecahedron-like Carbon Frameworks Derived from MOFs for Enhanced Capacitive Deionization. ACS Applied Materials & amp; Interfaces, 2017, 9, 15068-15078.	4.0	134
27	High Salt Removal Capacity of Metal–Organic Gel Derived Porous Carbon for Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2017, 5, 11637-11644.	3.2	67
28	Nitrogen-doped porous carbon derived from a bimetallic metal–organic framework as highly efficient electrodes for flow-through deionization capacitors. Journal of Materials Chemistry A, 2016, 4, 10858-10868.	5.2	164