Wu-Xing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1601258/publications.pdf Version: 2024-02-01

WILLYING ZHANG

#	Article	IF	CITATIONS
1	Nitrogenâ€Doped Porous Carbon Nanofiber Webs as Anodes for Lithium Ion Batteries with a Superhigh Capacity and Rate Capability. Advanced Materials, 2012, 24, 2047-2050.	11.1	1,541
2	Development and challenges of LiFePO ₄ cathode material for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 269-284.	15.6	1,058
3	Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon, 2013, 55, 328-334.	5.4	589
4	Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. Journal of Materials Chemistry A, 2014, 2, 12733.	5.2	582
5	Routes to High Energy Cathodes of Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1501727.	10.2	408
6	Sodium storage in Na-rich Na x FeFe(CN) 6 nanocubes. Nano Energy, 2015, 12, 386-393.	8.2	253
7	Morphosynthesis of a hierarchical MoO2 nanoarchitecture as a binder-free anode for lithium-ion batteries. Energy and Environmental Science, 2011, 4, 2870.	15.6	245
8	Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.	15.6	236
9	Hexacyanoferrateâ€Type Prussian Blue Analogs: Principles and Advances Toward Highâ€Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 2021, 11, 2000943.	10.2	217
10	Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. Journal of Physical Chemistry C, 2011, 115, 15703-15709.	1.5	201
11	High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. Journal of Power Sources, 2018, 378, 331-337.	4.0	159
12	Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. Journal of Power Sources, 2016, 308, 52-57.	4.0	153
13	Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy, 2013, 2, 412-418.	8.2	145
14	Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries. Nano Energy, 2015, 16, 479-487.	8.2	141
15	High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014, 5, 97-104.	8.2	138
16	Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 24026.	6.7	134
17	Thermal and electrochemical properties of PrBa0.5Sr0.5Co2â^'xFexO5+δ (xÂ=Â0.5, 1.0, 1.5) cathode materials for solid-oxide fuel cells. Journal of Power Sources, 2013, 232, 279-285.	4.0	134
18	A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries. Nanoscale, 2013, 5, 3298.	2.8	125

WU-XING ZHANG

#	Article	IF	CITATIONS
19	Synthesis of hierarchical MoS ₂ and its electrochemical performance as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3498-3504.	5.2	117
20	Effect of Vanadium Incorporation on Electrochemical Performance of LiFePO ₄ for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 13520-13527.	1.5	114
21	Fe7Se8 nanoparticles encapsulated by nitrogen-doped carbon with high sodium storage performance and evolving redox reactions. Energy Storage Materials, 2018, 10, 114-121.	9.5	106
22	Polypyrrole-promoted superior cyclability and rate capability of Na _x Fe[Fe(CN) ₆] cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 6036-6041.	5.2	100
23	Polycationic Polymer Layer for Air‣table and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes. Advanced Materials, 2021, 33, e2007428.	11.1	94
24	Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery. Electrochimica Acta, 2015, 174, 970-977.	2.6	87
25	Hollow K _{0.27} MnO ₂ Nanospheres as Cathode for High-Performance Aqueous Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 14564-14571.	4.0	81
26	Controllable Synthesis of Hollow Bipyramid β-MnO ₂ and Its High Electrochemical Performance for Lithium Storage. ACS Applied Materials & Interfaces, 2012, 4, 3047-3053.	4.0	78
27	Insight into the improvement of rate capability and cyclability in LiFePO4/polyaniline composite cathode. Electrochimica Acta, 2011, 56, 2689-2695.	2.6	77
28	Revisit of Polypyrrole as Cathode Material for Lithium-Ion Battery. Journal of the Electrochemical Society, 2012, 159, A1624-A1629.	1.3	77
29	Mechanism of Capacity Fade in Sodium Storage and the Strategies of Improvement for FeS ₂ Anode. ACS Applied Materials & Interfaces, 2017, 9, 1536-1541.	4.0	77
30	Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. Journal of Alloys and Compounds, 2014, 586, 208-215.	2.8	74
31	Nanostructured alkali cation incorporated δ-MnO ₂ cathode materials for aqueous sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7780-7785.	5.2	70
32	Self-templated synthesis of hollow porous submicron ZnMn2O4 sphere as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 559, 5-10.	2.8	66
33	Core-shell hexacyanoferrate for superior Na-ion batteries. Journal of Power Sources, 2016, 329, 290-296.	4.0	57
34	LiFe0.8Mn0.2PO4/C cathode material with high energy density for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 532, 25-30.	2.8	53
35	CoP3@PPy microcubes as anode for lithium-ion batteries with improved cycling and rate performance. Chemical Engineering Journal, 2018, 347, 455-461.	6.6	49
36	SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries. Electrochemistry Communications, 2011, 13, 1431-1434.	2.3	44

WU-XING ZHANG

#	Article	IF	CITATIONS
37	Facile synthesis of mesoporous 0.4Li2MnO3·0.6LiNi2/3Mn1/3O2 foams with superior performance for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 14964.	6.7	42
38	High-performance Li3V2(PO4)3/C cathode materials prepared via a sol–gel route with double carbon sources. Journal of Alloys and Compounds, 2012, 513, 414-419.	2.8	40
39	Carbon coated K _{0.8} Ti _{1.73} Li _{0.27} O ₄ : a novel anode material for sodium-ion batteries with a long cycle life. Chemical Communications, 2015, 51, 1608-1611.	2.2	33
40	Post-Synthetic and In Situ Vacancy Repairing of Iron Hexacyanoferrate Toward Highly Stable Cathodes for Sodium-Ion Batteries. Nano-Micro Letters, 2022, 14, 9.	14.4	32
41	Ultrafine Prussian Blue as a Highâ€Rate and Longâ€Life Sodiumâ€Ion Battery Cathode. Energy Technology, 2019, 7, 1900108.	1.8	31
42	Surface passivation of NaxFe[Fe(CN)6] cathode to improve its electrochemical kinetics and stability in sodium-ion batteries. Journal of Power Sources, 2020, 448, 227421.	4.0	31
43	Hydrothermal Synthesis of Li4Ti5O12/TiO2 Nano-composite As High Performance Anode Material for Li-Ion Batteries. Electrochimica Acta, 2014, 147, 506-512.	2.6	30
44	Graphene-induced growth of single crystalline Sb2MoO6sheets and their sodium storage performance. Journal of Materials Chemistry A, 2017, 5, 21328-21333.	5.2	28
45	Porous carbon nanotubes improved sulfur composite cathode for lithium-sulfur battery. Journal of Solid State Electrochemistry, 2013, 17, 1641-1647.	1.2	27
46	Significant Improved Electrochemical Performance of Spinel LiMn ₂ O ₄ Promoted by FePO ₄ Incorporation. Electrochemical and Solid-State Letters, 2011, 14, A109-A112.	2.2	22
47	Evaluation of Ca3Co2O6 as cathode material for high-performance solid-oxide fuel cell. Scientific Reports, 2013, 3, 1125.	1.6	22
48	Thermoelectric Solid-Oxide Fuel Cells with Extra Power Conversion from Waste Heat. Chemistry of Materials, 2012, 24, 1401-1403.	3.2	21
49	Ball-milling synthesis of ultrafine NayFexMn1-x[Fe(CN)6] as high-performance cathode in sodium-ion batteries. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	19
50	Synthesis and assembly of zinc hydroxide sulfate large flakes: Application in gas sensor based on a novel surface mount technology. Sensors and Actuators B: Chemical, 2010, 147, 495-501.	4.0	18
51	Hydrothermal Synthesis of ZnO Long Fibers. Chemistry Letters, 2005, 34, 1170-1171.	0.7	15
52	Morphology-controllable solvothermal synthesis of nanoscale LiFePO4 in a binary solvent. Science Bulletin, 2012, 57, 4170-4175.	1.7	15
53	Effect of Vapor Carbon Coating on the Surface Structure and Sodium Storage Performance of Hard Carbon Spheres. Energy Technology, 2019, 7, 1900779.	1.8	15
54	Large-scale synthesis of Ag1.8Mn8O16 nanorods and their electrochemical lithium-storage properties. Journal of Nanoparticle Research, 2011, 13, 3139-3148.	0.8	14

WU-XING ZHANG

#	Article	IF	CITATIONS
55	Ultrasonic-assisted solution combustion synthesis of porous Na3V2(PO4)3/C: formation mechanism and sodium storage performance. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	12
56	Double Coating of Micron‣ized Silicon by TiN@NC for Highâ€Performance Anode in Lithiumâ€lon Batteries. Energy Technology, 2019, 7, 1900487.	1.8	12
57	Constructing Stable Anodic Interphase for Quasi-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 39335-39341.	4.0	12
58	Facile synthesis of FeSi4P4 and its Sodium Ion Storage Performance. Electrochimica Acta, 2017, 247, 820-825.	2.6	11
59	The effects of Fe@C nanoparticles on the lithium storage performance of VS4 anode. Journal of Alloys and Compounds, 2018, 768, 938-943.	2.8	11
60	Phase Controllable Synthesis of Well-Crystallized Rhodium Sulfides by the Hydrothermal Method. Crystal Growth and Design, 2009, 9, 3765-3770.	1.4	10
61	A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery. Journal of Nanoscience and Nanotechnology, 2016, 16, 6494-6497.	0.9	10
62	Hydrothermal synthesis of bismuth sodium titanate particles with different morphologies. Journal of Materials Science, 2013, 48, 6878-6884.	1.7	9
63	Fabrication of patterned Ba0.71Sr0.29TiO3 thick film on Si substrate by tape casting method. Journal of the European Ceramic Society, 2006, 26, 2793-2798.	2.8	7
64	Oxidation resistance behavior of smart W-Si bulk composites. Corrosion Science, 2020, 163, 108222.	3.0	7
65	Solvothermal Preparation and Control of Phase Composition of Nanosized Rhodium Sulfide Particles. Chemistry Letters, 2009, 38, 210-211.	0.7	6
66	Effects of reaction parameters on solution combustion synthesis of lepidocrocite-like K0.80Ti1.733Li0.267O4: phase formation and morphology evolution. Journal of Materials Science, 2013, 48, 1533-1542.	1.7	6
67	Gamma titanium phosphate as an electrode material for Li-ion and Na-ion storage: performance and mechanism. Journal of Materials Chemistry A, 2016, 4, 18084-18090.	5.2	6
68	Synthesis and modification of well-ordered layered cathode oxide LiNi2/3Mn1/3O2. Science Bulletin, 2010, 55, 3419-3423.	1.7	3
69	Flower-Like K0.27MnO2 As Cathode Materials for High-Performance Aqueous Sodium-Ion Batteries. ECS Meeting Abstracts, 2013, , .	0.0	2
70	Si/Cu3Si@C Composite Encapsulated in CNTs Network as High Performance Anode for Lithium Ion Batteries. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 1055-1061.	0.4	2
71	Lithiumâ€Metal Batteries: Polycationic Polymer Layer for Airâ€Stable and Dendriteâ€Free Li Metal Anodes in Carbonate Electrolytes (Adv. Mater. 12/2021). Advanced Materials, 2021, 33, 2170087.	11.1	2
72	A self-passivating tungsten bulk composite: Effects of silicon on its oxidation resistance. International Journal of Refractory Metals and Hard Materials, 2021, 100, 105631.	1.7	2

#	Article	IF	CITATIONS
73	Hexacyanoferrate Cathode for Superior Na-Ion Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0