Aaron W Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1601199/publications.pdf

Version: 2024-02-01

27 papers 1,004 citations

471509 17 h-index 9-index

27 all docs

27 docs citations

27 times ranked

1406 citing authors

#	Article	IF	CITATIONS
1	Comparative functional analysis of the urinary tract microbiome for individuals with or without calcium oxalate calculi. Urolithiasis, 2022, 50, 303-317.	2.0	8
2	Transperineal Prostate Biopsy is Associated With Lower Tissue Core Pathogen Burden Relative to Transrectal Biopsy: Mechanistic Underpinnings for Lower Infection Risk in the Transperineal Approach. Urology, 2022, , .	1.0	5
3	Standardization of microbiome studies for urolithiasis: an international consensus agreement. Nature Reviews Urology, 2021, 18, 303-311.	3.8	22
4	A Perspective on the Metabolic Potential for Microbial Contributions to Urolithiasis. Kidney360, 2021, 2, 1170-1173.	2.1	3
5	Meta-analysis of Clinical Microbiome Studies in Urolithiasis Reveal Age, Stone Composition, and Study Location as the Predominant Factors in Urolithiasis-Associated Microbiome Composition. MBio, 2021, 12, e0200721.	4.1	26
6	Evaluation of Oxalobacter formigenes DSM 4420 biodegradation activity for high oxalate media content: An in vitro model. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101378.	3.1	7
7	Antibiotics and Kidney Stones: Perturbation of the Gut-Kidney Axis. American Journal of Kidney Diseases, 2019, 74, 724-726.	1.9	4
8	Defining Dysbiosis for a Cluster of Chronic Diseases. Scientific Reports, 2019, 9, 12918.	3.3	199
9	Loss of function dysbiosis associated with antibiotics and high fat, high sugar diet. ISME Journal, 2019, 13, 1379-1390.	9.8	29
10	The Role of the Intestinal Microbiome in Oxalate Homeostasis. , 2019, , 179-186.		0
11	Inhibition of urinary stone disease by a multi-species bacterial network ensures healthy oxalate homeostasis. Kidney International, 2019, 96, 180-188.	5.2	77
12	Defining Dysbiosis in Patients with Urolithiasis. Scientific Reports, 2019, 9, 5425.	3.3	69
13	Commentary: Loss of Function Dysbiosis Associated with Antibiotics and High Fat, High Sugar Diet. , 2019, 2, 23-25.		O
14	Intestinal Epithelial Cell–Derived LKB1 Suppresses Colitogenic Microbiota. Journal of Immunology, 2018, 200, ji1700547.	0.8	19
15	Response to Lange re: Calcium Oxalate Urolithiasis: A Case of Missing Microbes? by Batagello <i>et al.</i> (From: Lange D. J Endourol 2018;32:1006; DOI: 10.1089/end.2018.0606). Journal of Endourology, 2018, 32, 1007-1007.	2.1	O
16	Metagenomic sequencing provides insights into microbial detoxification in the guts of small mammalian herbivores (Neotoma spp.). FEMS Microbiology Ecology, 2018, 94, .	2.7	19
17	Calcium Oxalate Urolithiasis: A Case of Missing Microbes?. Journal of Endourology, 2018, 32, 995-1005.	2.1	33
18	The Induction of Oxalate Metabolism $\langle i \rangle$ In Vivo $\langle i \rangle$ Is More Effective with Functional Microbial Communities than with Functional Microbial Species. MSystems, 2017, 2, .	3.8	33

#	ARTICLE	IF	CITATION
19	LRRK2 promotes the activation of NLRC4 inflammasome during <i>Salmonella</i> Typhimurium infection. Journal of Experimental Medicine, 2017, 214, 3051-3066.	8.5	119
20	Modeling time-series data from microbial communities. ISME Journal, 2017, 11, 2526-2537.	9.8	52
21	Microbiota Diversification and Crash Induced by Dietary Oxalate in the Mammalian Herbivore <i>Neotoma albigula</i> . MSphere, 2017, 2, .	2.9	22
22	Microbial Community Transplant Results in Increased and Long-Term Oxalate Degradation. Microbial Ecology, 2016, 72, 470-478.	2.8	45
23	Effect of Dietary Oxalate on the Gut Microbiota of the Mammalian Herbivore Neotoma albigula. Applied and Environmental Microbiology, 2016, 82, 2669-2675.	3.1	38
24	Emerging coral diseases: a temperatureâ€driven process?. Marine Ecology, 2015, 36, 278-291.	1.1	33
25	Evolutionary irony: evidence that  defensive' plant spines act as a proximate cue to attract a mammalian herbivore. Oikos, 2015, 124, 835-841.	2.7	11
26	The Gastrointestinal Tract of the White-Throated Woodrat (Neotoma albigula) Harbors Distinct Consortia of Oxalate-Degrading Bacteria. Applied and Environmental Microbiology, 2014, 80, 1595-1601.	3.1	68
27	The Metabolic and Ecological Interactions of Oxalate-Degrading Bacteria in the Mammalian Gut. Pathogens, 2013, 2, 636-652.	2.8	63