
Luca Costantino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160096/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Privileged Structures as Leads in Medicinal Chemistry. Current Medicinal Chemistry, 2006, 13, 65-85.	1.2	313
2	Soft Docking and Multiple Receptor Conformations in Virtual Screening. Journal of Medicinal Chemistry, 2004, 47, 5076-5084.	2.9	228
3	Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorganic and Medicinal Chemistry, 2002, 10, 1077-1084.	1.4	223
4	Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. Journal of Controlled Release, 2007, 122, 1-9.	4.8	217
5	Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. Journal of Controlled Release, 2005, 108, 84-96.	4.8	202
6	Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opinion on Drug Delivery, 2008, 5, 155-174.	2.4	189
7	Binding of β-carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug and Alcohol Dependence, 2000, 60, 121-132.	1.6	182
8	Activity of Polyphenolic Crude Extracts as Scavangers of Superoxide Radicals and Inhibitors of Xanthine Oxidase. Planta Medica, 1992, 58, 342-344.	0.7	157
9	Diabetes complications and their potential prevention: Aldose reductase inhibition and other approaches. , 1999, 19, 3-23.		143
10	Nanoparticles as drug delivery agents specific for CNS: in vivo biodistribution. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 369-377.	1.7	133
11	Sialic acid and glycopeptides conjugated PLCA nanoparticles for central nervous system targeting: In vivo pharmacological evidence and biodistribution. Journal of Controlled Release, 2010, 145, 49-57.	4.8	110
12	Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine, 2012, 7, 121-131.	1.7	100
13	1-Benzopyran-4-one Antioxidants as Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 1999, 42, 1881-1893.	2.9	95
14	Synthesis, Activity, and Molecular Modeling of a New Series of Tricyclic Pyridazinones as Selective Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 1996, 39, 4396-4405.	2.9	90
15	STAT 3 as a Target for Cancer Drug Discovery. Current Medicinal Chemistry, 2008, 15, 834-843.	1.2	87
16	Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents?. Drug Discovery Today, 2012, 17, 367-378.	3.2	87
17	Pharmacological approaches to the treatment of diabetic complications. Expert Opinion on Therapeutic Patents, 2000, 10, 1245-1262.	2.4	73
18	Nanoparticulate drug carriers based on hybrid poly(d,l-lactide-co-glycolide)-dendron structures. Biomaterials, 2006, 27, 4635-4645.	5.7	68

#	Article	IF	CITATIONS
19	PLGA nanoparticles surface decorated with the sialic acid, N-acetylneuraminic acid. Biomaterials, 2010, 31, 3395-3403.	5.7	64
20	Discovery of new inhibitors of aldose reductase from molecular docking and database screening. Bioorganic and Medicinal Chemistry, 2002, 10, 1437-1450.	1.4	59
21	Isolation and pharmacological activities of the Tecoma stans alkaloids. Il Farmaco, 2003, 58, 781-785.	0.9	59
22	New aldose reductase inhibitors as potential agents for the prevention of long-term diabetic complications. Expert Opinion on Therapeutic Patents, 1997, 7, 843-858.	2.4	57
23	Designed Multiple Ligands: Basic Research vs Clinical Outcomes. Current Medicinal Chemistry, 2012, 19, 3353-3387.	1.2	57
24	Oxidative Modification of Aldose Reductase Induced by Copper Ion. Journal of Biological Chemistry, 2002, 277, 42017-42027.	1.6	56
25	Discovery and development of novel salicylate synthase (Mbtl) furanic inhibitors as antitubercular agents. European Journal of Medicinal Chemistry, 2018, 155, 754-763.	2.6	55
26	Synthesis and activity of a new series of chalcones as aldose reductase inhibitors. European Journal of Medicinal Chemistry, 1998, 33, 859-866.	2.6	52
27	Nose-to-Brain Drug Delivery by Nanoparticles in the Treatment of Neurological Disorders. Current Medicinal Chemistry, 2014, 21, 4247-4256.	1.2	48
28	Surface engineering of Solid Lipid Nanoparticle assemblies by methyl α- d -mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. International Journal of Pharmaceutics, 2017, 528, 440-451.	2.6	46
29	Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 2658-2672.	1.4	44
30	In Vivo Biodistribution of Respirable Solid Lipid Nanoparticles Surface-Decorated with a Mannose-Based Surfactant: A Promising Tool for Pulmonary Tuberculosis Treatment?. Nanomaterials, 2020, 10, 568.	1.9	42
31	Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs. Journal of Medicinal Chemistry, 2016, 59, 7598-7616.	2.9	41
32	Newly synthesized surfactants for surface mannosylation of respirable SLN assemblies to target macrophages in tuberculosis therapy. Drug Delivery and Translational Research, 2019, 9, 298-310.	3.0	41
33	Synthesis and Biological Evaluation of New Imidazole, Pyrimidine, and Purine Derivatives and Analogs as Inhibitors of Xanthine Oxidase. Journal of Medicinal Chemistry, 1996, 39, 2529-2535.	2.9	39
34	A rational approach to the design of flavones as xanthine oxidase inhibitors. European Journal of Medicinal Chemistry, 1996, 31, 693-699.	2.6	39
35	A Model of the Interaction of Substrates and Inhibitors with Xanthine Oxidase. Journal of the American Chemical Society, 1997, 119, 3007-3016.	6.6	38
36	lron Acquisition Pathways as Targets for Antitubercular Drugs. Current Medicinal Chemistry, 2016, 23, 4009-4026.	1.2	35

#	Article	IF	CITATIONS
37	Isoxazolo-[3,4-d]-pyridazin-7-(6H)-one as a Potential Substrate for New Aldose Reductase Inhibitors. Journal of Medicinal Chemistry, 1999, 42, 1894-1900.	2.9	34
38	Structural bases for the inhibition of aldose reductase by phenolic compounds. Bioorganic and Medicinal Chemistry, 2000, 8, 1151-1158.	1.4	33
39	Colloidal systems for CNS drug delivery. Progress in Brain Research, 2009, 180, 35-69.	0.9	32
40	Inhibition of Lens Aldose Reductase by Biflavones from <i>Ouratea spectabilis</i> . Planta Medica, 1995, 61, 217-220.	0.7	31
41	Aldose Reductase does Catalyse the Reduction of Glyceraldehyde Through a Stoichiometric Oxidation of NADPH. Experimental Eye Research, 2000, 71, 515-521.	1.2	31
42	New Chromane-Based Derivatives as Inhibitors of Mycobacterium tuberculosis Salicylate Synthase (Mbtl): Preliminary Biological Evaluation and Molecular Modeling Studies. Molecules, 2018, 23, 1506.	1.7	28
43	Aryl thiosemicarbazones for the treatment of trypanosomatidic infections. European Journal of Medicinal Chemistry, 2018, 146, 423-434.	2.6	27
44	Structure-based design of an inhibitor modeled at the substrate active site of aldose reductase. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 1897-1902.	1.0	26
45	Magnetic and optical bistability in tetrairon(iii) single molecule magnets functionalized with azobenzene groups. Dalton Transactions, 2012, 41, 8368.	1.6	26
46	AFM phase imaging of soft-hydrated samples: A versatile tool to complete the chemical-physical study of liposomes. Journal of Liposome Research, 2009, 19, 59-67.	1.5	25
47	New insight into structure-activity of furan-based salicylate synthase (Mbtl) inhibitors as potential antitubercular agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 823-828.	2.5	25
48	Exploiting the 2-Amino-1,3,4-thiadiazole Scaffold To Inhibit Trypanosoma brucei Pteridine Reductase in Support of Early-Stage Drug Discovery. ACS Omega, 2017, 2, 5666-5683.	1.6	24
49	Synthesis and aldose reductase inhibitory activity of a new series of benzo[h]cinnolinone derivatives. Il Farmaco, 2000, 55, 544-552.	0.9	23
50	Nitrophenyl Derivatives as Aldose Reductase Inhibitors. Bioorganic and Medicinal Chemistry, 2002, 10, 3923-3931.	1.4	23
51	An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Current Topics in Medicinal Chemistry, 2019, 19, 646-661.	1.0	23
52	7-Hydroxy-2-substituted-4-H-1-benzopyran-4-one derivatives as aldose reductase inhibitors: a SAR study. European Journal of Medicinal Chemistry, 2001, 36, 697-703.	2.6	22
53	Challenges in the design of multitarget drugs against multifactorial pathologies: a new life for medicinal chemistry?. Future Medicinal Chemistry, 2013, 5, 5-7.	1.1	22
54	Synthesis and Structureâ^'Activity Relationships of 1-Aralkyl-4-Benzylpiperidine and 1-Aralkyl-4-Benzylpiperazine Derivatives as Potent σ Ligands. Journal of Medicinal Chemistry, 2005, 48, 266-273.	2.9	21

#	Article	IF	CITATIONS
55	Enhancement of Benzothiazoles as Pteridine Reductase-1 Inhibitors for the Treatment of Trypanosomatidic Infections. Journal of Medicinal Chemistry, 2019, 62, 3989-4012.	2.9	21
56	Methoxylated 2'-hydroxychalcones as antiparasitic hit compounds. European Journal of Medicinal Chemistry, 2017, 126, 1129-1135.	2.6	20
57	Theoretical and experimental study of flavones as inhibitors of xanthine oxidase. European Journal of Medicinal Chemistry, 1995, 30, 141-146.	2.6	19
58	Synthesis of Novel Benzoic Acid Derivatives with Benzothiazolyl Subunit and Evaluation as Aldose Reductase Inhibitors. Archiv Der Pharmazie, 2005, 338, 411-418.	2.1	19
59	Teaching an Undergraduate Organic Chemistry Laboratory Course with a Tailored Problem-Based Learning Approach. Journal of Chemical Education, 2019, 96, 888-894.	1.1	19
60	Oxidative Modification of Aldose Reductase Induced by Copper Ion. Factors and Conditions Affecting the Processâ€. Biochemistry, 1998, 37, 14167-14174.	1.2	18
61	The Impact of Lipid Corona on Rifampicin Intramacrophagic Transport Using Inhaled Solid Lipid Nanoparticles Surface-Decorated with a Mannosylated Surfactant. Pharmaceutics, 2019, 11, 508.	2.0	18
62	Molecular dynamics simulations of the structure of aldose reductase complexed with the inhibitor tolrestat. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 641-646.	1.0	17
63	Inhibitors for Proteins Endowed with Catalytic and Non-Catalytic Activity which Recognize pTyr. Current Medicinal Chemistry, 2004, 11, 2725-2747.	1.2	15
64	Drug delivery to the CNS and polymeric nanoparticulate carriers. Future Medicinal Chemistry, 2010, 2, 1681-1701.	1.1	15
65	Anti-Inflammatory Activity of Newly Synthesized 2,6-bis-(1,1-Dimethylethyl)Phenol Derivatives. Pharmacological Research, 1993, 27, 349-358.	3.1	14
66	Synthesis and aldose reductase inhibitory activities of novel thienocinnolinone derivatives. European Journal of Pharmaceutical Sciences, 2004, 21, 545-552.	1.9	13
67	Ghrelin receptor modulators and their therapeutic potential. Future Medicinal Chemistry, 2009, 1, 157-177.	1.1	12
68	Inhibitory activity of flavonols towards the xanthine oxidase enzyme. International Journal of Pharmaceutics, 1992, 86, 17-23.	2.6	11
69	Free energy perturbation studies on binding of the inhibitor 5,6-dihydrobenzo[h]cinnolin-3(2H)one-2-acetic acid and its methoxylated analogs to aldose reductase. Tetrahedron, 1998, 54, 9415-9428.	1.0	11
70	Design, synthesis and biological evaluation of non-covalent AmpC β-lactamases inhibitors. Medicinal Chemistry Research, 2017, 26, 975-986.	1.1	11
71	Ghrelin receptor modulators: a patent review (2011 – 2014). Expert Opinion on Therapeutic Patents, 2014, 24, 1007-1019.	2.4	9
72	Quantitative measurement of proton dissociation and tautomeric constants of apigeninidin. Journal of the Chemical Society Perkin Transactions II, 1995, , 227.	0.9	8

#	Article	IF	CITATIONS
73	A series of diarylsubstituted oximes as potential substrate for new aldose reductase inhibitors. Journal of Heterocyclic Chemistry, 2000, 37, 1089-1096.	1.4	8
74	On the prodrug potential of novel aldose reductase inhibitors with diphenylmethyleneaminooxycarboxylic acid structure. European Journal of Pharmaceutical Sciences, 2002, 15, 11-20.	1.9	8
75	Binding of 1-Benzopyran-4-one Derivatives to Aldose Reductase: A Free Energy Perturbation Study. Bioorganic and Medicinal Chemistry, 2002, 10, 1427-1436.	1.4	8
76	2′-Deoxyuridine 5′-Monophosphate Substrate Displacement in Thymidylate Synthase through 6-Hydroxy-2H-naphtho[1,8-bc]furan-2-one Derivatives. Journal of Medicinal Chemistry, 2013, 56, 9356-9360.	2.9	8
77	Challenges in the Design of Clinically Useful Brain-targeted Drug Nanocarriers. Current Medicinal Chemistry, 2014, 21, 4227-4246.	1.2	8
78	Synthesis and aldose reductase inhibitory activity of benzoyl-amino acid derivatives. Il Farmaco, 1998, 53, 439-442.	0.9	6
79	Heteroarylalkanoic Acids with Possible Antiinflammatory Activities, III. Archiv Der Pharmazie, 1985, 318, 903-911.	2.1	5
80	Growth hormone secretagogue receptor antagonists. Expert Opinion on Therapeutic Patents, 2012, 22, 697-700.	2.4	5
81	New perspectives on the development of antiobesity drugs. Future Medicinal Chemistry, 2015, 7, 315-336.	1.1	4
82	Methods for synthesis and uses of inhibitors of Ghrelin O-acyltransferase inhibitors as potential therapeutic agents for obesity and diabetes. Expert Opinion on Therapeutic Patents, 2010, 20, 1603-1607.	2.4	2
83	Novel triazole derivatives with improved receptor activity and bioavailability properties as ghrelin antagonists of growth hormone secretagogue receptors (WO2012035124): a patent evaluation. Expert Opinion on Therapeutic Patents, 2012, 22, 1099-1104.	2.4	2
84	Solvent effects on the tautomerism of apigeninidin. Tetrahedron Letters, 1994, 35, 9751-9754.	0.7	1
85	Determination of drug-macromolecule binding parameters by numerical analysis. Analytica Chimica Acta, 1991, 244, 145-149.	2.6	0
86	Synthesis of Novel Benzoic Acid Derivatives with Benzothiazolyl Subunit and Evaluation as Aldose Reductase Inhibitors ChemInform, 2005, 36, no.	0.1	0