Qin Zhou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/160051/qin-zhou-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

328	9,935	54	75
papers	citations	h-index	g-index
332 ext. papers	12,378 ext. citations	2.9 avg, IF	7.14 L-index

#	Paper	IF	Citations
328	Erratum to Iluminance Learning for Remotely Sensed Image Enhancement Guided by Weighted Least Squares []/EEE Geoscience and Remote Sensing Letters, 2022, 19, 1-1	4.1	
327	Influence of Parameters of Optical Fibers on Optical Soliton Interactions. <i>Chinese Physics Letters</i> , 2022 , 39, 010501	1.8	24
326	On the existence of chirped algebraic solitary waves in optical fibers governed by Kundu E ckhaus equation. <i>Results in Physics</i> , 2022 , 34, 105272	3.7	1
325	Chirped optical soliton propagation in birefringent fibers modeled by coupled Fokas-Lenells system. <i>Chaos, Solitons and Fractals,</i> 2022 , 155, 111751	9.3	2
324	Cubicquartic optical soliton perturbation with complex Ginzburg[landau equation by the enhanced Kudryashov[landau] method. <i>Chaos, Solitons and Fractals,</i> 2022 , 155, 111748	9.3	6
323	Localized pulses in optical fibers governed by perturbed Fokasllenells equation. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2022 , 421, 127782	2.3	1
322	Optical solitons in fiber Bragg gratings with cubicquartic dispersive reflectivity by enhanced Kudryashov's approach. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2022 , 422, 127	7 7 97	6
321	Exact analysis and elastic interaction of multi-soliton for a two-dimensional Gross-Pitaevskii equation in the Bose-Einstein condensation <i>Journal of Advanced Research</i> , 2022 , 38, 179-190	13	1
320	Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases. <i>Chinese Physics Letters</i> , 2022 , 39, 034202	1.8	10
319	New chirped gray and kink selflimilar waves in presence of quintic nonlinearity and selfliteepening effect. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2022 , 437, 1281	₆ 24 ³	0
318	Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity. <i>Chinese Physics Letters</i> , 2022 , 39, 044202	1.8	10
317	Perturbation of chirped localized waves in a dual-power law nonlinear medium. <i>Chaos, Solitons and Fractals</i> , 2022 , 160, 112198	9.3	2
316	Learning a Contrast Enhancer for Intensity Correction of Remotely Sensed Images. <i>IEEE Signal Processing Letters</i> , 2021 , 1-1	3.2	2
315	Conservation laws for pure-cubic optical solitons with complex Ginzburg and an equation having several refractive index structures. <i>Results in Physics</i> , 2021 , 31, 104901	3.7	5
314	Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrdinger equation with the four-wave mixing term. <i>Nonlinear Dynamics</i> , 2021 , 104, 2613-2620	5	38
313	Propagation of chirped periodic and localized waves with higher-order effects through optical fibers. <i>Chaos, Solitons and Fractals</i> , 2021 , 146, 110873	9.3	9
312	Gray optical dips of Kundu-Mukherjee-Naskar model. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 401, 127341	2.3	4

(2020-2021)

311	Highly dispersive optical solitons in the nonlinear Schrdingerd equation having polynomial law of the refractive index change. <i>Indian Journal of Physics</i> , 2021 , 95, 109-119	1.4	11
310	Luminance Learning for Remotely Sensed Image Enhancement Guided by Weighted Least Squares. <i>IEEE Geoscience and Remote Sensing Letters</i> , 2021 , 1-5	4.1	4
309	Effects of dispersion terms on optical soliton propagation in a lossy fiber system. <i>Nonlinear Dynamics</i> , 2021 , 104, 629-637	5	21
308	Formation of chirped kink similaritons in non-Kerr media with varying Raman effect. <i>Results in Physics</i> , 2021 , 26, 104381	3.7	1
307	Nonlinear optical property and application of yttrium oxide in erbium-doped fiber lasers. <i>Optics Express</i> , 2021 , 29, 29402-29411	3.3	12
306	Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrdinger equation. <i>Nonlinear Dynamics</i> , 2021 , 106, 2479	5	22
305	Localized waves and mixed interaction solutions with dynamical analysis to the GrossPitaevskii equation in the BosePinstein condensate. <i>Nonlinear Dynamics</i> , 2021 , 106, 841-854	5	15
304	Algorithm for dark solitons with RadhakrishnanKundullakshmanan model in an optical fiber. <i>Results in Physics</i> , 2021 , 30, 104806	3.7	3
303	Conservation laws for solitons in magnetobptic waveguides with dualpower law nonlinearity. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 416, 127667	2.3	О
302	Chirped optical solitons having polynomial law of nonlinear refractive index with self-steepening and nonlinear dispersion. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 417, 127698	2.3	3
301	SolitonBoliton interaction and its influence on soliton amplitude and period. <i>Results in Physics</i> , 2021 , 30, 104831	3.7	3
300	Straddled optical solitons for cubicquartic Lakshmanan Porsezian Daniel model by Lie symmetry. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2021 , 417, 127706	2.3	5
299	Optical solitons in birefringent fibers with Radhakrishnan Eundu Dakshmanan equation by a couple of strategically sound integration architectures. <i>Chinese Journal of Physics</i> , 2020 , 65, 341-354	3.5	9
298	Self-frequency shift effect for chirped self-similar solitons in a tapered graded-indexed waveguide. <i>Optics Communications</i> , 2020 , 468, 125800	2	8
297	Darboux transformation for a generalized Ablowitz-Kaup-Newell-Segur hierarchy equation. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126394	2.3	10
296	Layered AuTe2Se4/3 for a stable nanosecond Q-switched fiber laser. <i>Optik</i> , 2020 , 204, 164231	2.5	4
295	Spatiotemporal solitons in cold Rydberg atomic gases with Bessel optical lattices. <i>Applied Mathematics Letters</i> , 2020 , 106, 106230	3.5	24
294	Interactions among solitons for a fifth-order variable coefficient nonlinear Schrdinger equation. Nonlinear Dynamics, 2020, 100, 2797-2805	5	15

293	Conservation Laws for Highly Dispersive Optical Solitons in Birefringent Fibers. <i>Regular and Chaotic Dynamics</i> , 2020 , 25, 166-177	1.6	15
292	The mixed interaction of localized, breather, exploding and solitary wave for the (3+1)-dimensional Kadomtsev Petviashvili equation in fluid dynamics. <i>Nonlinear Dynamics</i> , 2020 , 100, 1611-1619	5	11
291	Optical soliton perturbation with polynomial and triple-power laws of refractive index by semi-inverse variational principle. <i>Chaos, Solitons and Fractals,</i> 2020 , 135, 109765	9.3	7
290	The similarities and differences of different plane solitons controlled by (3 \mathbb{H} 1) - Dimensional coupled variable coefficient system. <i>Journal of Advanced Research</i> , 2020 , 24, 167-173	13	33
289	Periodic soliton interactions for higher-order nonlinear Schrdinger equation in optical fibers. <i>Nonlinear Dynamics</i> , 2020 , 100, 2817-2821	5	38
288	Parity-time symmetry light bullets in a cold Rydberg atomic gas. <i>Optics Express</i> , 2020 , 28, 16322-16332	3.3	22
287	Sequel to highly dispersive optical soliton perturbation with cubic-quintic-septic refractive index by semi-inverse variational principle. <i>Optik</i> , 2020 , 203, 163451	2.5	7
286	Q-switched all-fiber laser based on titanium trisulfide. <i>Optik</i> , 2020 , 205, 164234	2.5	15
285	Dispersive optical dromions and domain walls with a few golden integration formulae. <i>Optik</i> , 2020 , 202, 163439	2.5	5
284	Cubic-quartic optical solitons in birefringent fibers with four forms of nonlinear refractive index by exp-function expansion. <i>Results in Physics</i> , 2020 , 16, 102913	3.7	42
283	Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction. <i>Applied Mathematics and Computation</i> , 2020 , 371, 12495	5 2 .7	4
282	Optical solitons with differential group delay for complex Ginzburglandau equation. <i>Results in Physics</i> , 2020 , 16, 102888	3.7	10
281	Optical solitons with Chen[lee[liu equation by Lie symmetry. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2020 , 384, 126202	2.3	17
280	Optical dromions, domain walls and conservation laws with KunduMukherjeeNaskar equation via traveling waves and Lie symmetry. <i>Results in Physics</i> , 2020 , 16, 102850	3.7	23
279	Dromion-like structures and periodic wave solutions for variable-coefficients complex cubicquintic Ginzburg[landau equation influenced by higher-order effects and nonlinear gain. <i>Nonlinear Dynamics</i> , 2020 , 99, 1313-1319	5	94
278	Conservation laws for optical solitons with polynomial and triple-power laws of refractive index. <i>Optik</i> , 2020 , 202, 163476	2.5	6
277	Propagation properties of chirped optical similaritons with dual-power law nonlinearity. <i>Chaos, Solitons and Fractals,</i> 2020 , 140, 110158	9.3	7
276	Chirped self-similar cnoidal waves and similaritons in an inhomogeneous optical medium with resonant nonlinearity. <i>Chaos, Solitons and Fractals,</i> 2020 , 141, 110441	9.3	7

Nonlinear control for soliton interactions in optical fiber systems. Nonlinear Dynamics, 2020, 101, 1215-1220 275 Optical solitons in birefringent fibers with Lakshmanan Porsezian Daniel model by the aid of a few 6 274 2.5 insightful algorithms. Optik, 2020, 200, 163281 Some lump solutions for a generalized (3+1)-dimensional KadomtsevPetviashvili equation. Applied 46 273 2.7 Mathematics and Computation, 2020, 366, 124757 Optical solitons in birefringent fibers having anti-cubic nonlinearity with a few prolific integration 272 2.5 11 algorithms. Optik, 2020, 200, 163229 Optical solitons and conservation laws of Kudryashov's equation using undetermined coefficients. 271 2.5 24 Optik, 2020, 202, 163417 Optical solitons for modulated compressional dispersive alfven and heisenberg ferromagnetic spin 3.7 10 chains. Results in Physics, **2019**, 15, 102714 269 Conservation laws for highly dispersive optical solitons. Optik, 2019, 199, 163283 2.5 12 Dark two-soliton solutions for nonlinear Schrdinger equations in inhomogeneous optical fibers. 268 12 3.5 Chinese Journal of Physics, **2019**, 61, 310-315 Highly dispersive optical soliton perturbation with cubic unit deptic refractive index by 267 2.5 19 semi-inverse variational principle. Optik, 2019, 199, 163322 Suppressing internet bottleneck with fractional temporal evolution of cubicquartic optical 266 2.5 20 solitons. Optik, 2019, 182, 303-307 W-shaped, bright and dark solitons of BiswasArshed equation. Optik, 2019, 182, 227-232 265 2.5 51 Bright and singular optical solitons for KaupNewell equation with two fundamental integration 264 2.5 norms. Optik, **2019**, 182, 594-597 Optical solitons in birefringent fibers with Lakshmanan Porsezian Daniel model by modified 263 2.5 19 simple equation. Optik, 2019, 192, 162899 Optical soliton perturbation in parabolic law medium having weak non-local nonlinearity by a 262 3.7 couple of strategic integration architectures. Results in Physics, 2019, 13, 102334 Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous 261 2.7 37 multi-mode fiber. Applied Mathematics and Computation, 2019, 361, 325-331 Optical soliton perturbation with quadratic-cubic nonlinearity by mapping methods. Chinese Journal 260 3.5 11 of Physics, 2019, 60, 632-637 Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schr dinger equation in an optical fiber communication system. Nonlinear Dynamics, 259 5 40 2019, 97, 1253-1262 Multiple Soliton Solutions of the Sawada-Kotera Equation with a Nonvanishing Boundary Condition and the Perturbed Korteweg de Vries Equation by Using the Multiple Exp-Function Scheme. 258 1.1 Advances in Mathematical Physics, 2019, 2019, 1-5

Highly dispersive optical solitons with undetermined coefficients. Optik, 2019, 182, 890-896

Scalable one-step synthesis of N,S co-doped graphene-enhanced hierarchical porous carbon foam

for high-performance solid-state supercapacitors. *Journal of Materials Chemistry A*, **2019**, 7, 7591-7603

2.5

43

67

(2019-2019)

239	Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations. <i>Nonlinear Engineering</i> , 2019 , 8, 224-230	3	69
238	Analytic study on chirped optical solitons in nonlinear metamaterials with higher order effects. <i>Laser Physics</i> , 2019 , 29, 095402	1.2	24
237	Phase-shift controlling of three solitons in dispersion-decreasing fibers. <i>Nonlinear Dynamics</i> , 2019 , 98, 395-401	5	98
236	Propagation of chirped optical similaritons in inhomogeneous tapered centrosymmetric nonlinear waveguides doped with resonant impurities. <i>Laser Physics</i> , 2019 , 29, 085401	1.2	3
235	Lump and lump strip solutions to the (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation. <i>European Physical Journal Plus</i> , 2019 , 134, 1	3.1	15
234	Sub pico-second optical pulses in birefringent fibers for KaupNewell equation with cutting-edge integration technologies. <i>Results in Physics</i> , 2019 , 15, 102660	3.7	14
233	Optical solitons with nonlocal-parabolic combo nonlinearity by Lie symmetry analysis coupled with modified G?/G-expansion. <i>Results in Physics</i> , 2019 , 15, 102713	3.7	8
232	Darboux transformation and analytic solutions for a generalized super-NLS-mKdV equation. <i>Nonlinear Dynamics</i> , 2019 , 98, 1491-1500	5	62
231	Optical solitons with complex Ginzburg[landau equation for two nonlinear forms using F-expansion. <i>Chinese Journal of Physics</i> , 2019 , 61, 255-261	3.5	27
230	Highly dispersive optical soliton perturbation with Kerr law by semi-inverse variational principle. <i>Optik</i> , 2019 , 199, 163226	2.5	13
229	Dispersive solitons in optical fibers and DWDM networks with Schrdinger dirota equation. <i>Optik</i> , 2019 , 199, 163214	2.5	14
228	Soliton Solutions and Conservation Laws of a (3+1)-Dimensional Nonlinear Evolution Equation. <i>Acta Physica Polonica A</i> , 2019 , 135, 539-545	0.6	1
227	Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrdinger equation. <i>Nonlinear Dynamics</i> , 2019 , 96, 801-809	5	56
226	Dromion-like soliton interactions for nonlinear Schrdinger equation with variable coefficients in inhomogeneous optical fibers. <i>Nonlinear Dynamics</i> , 2019 , 96, 729-736	5	55
225	Chirped bright and double-kinked quasi-solitons in optical metamaterials with self-steepening nonlinearity. <i>Journal of Modern Optics</i> , 2019 , 66, 192-199	1.1	11
224	Generation and control of multiple solitons under the influence of parameters. <i>Nonlinear Dynamics</i> , 2019 , 95, 143-150	5	88
223	Propagation of chirped gray optical dips in nonlinear metamaterials. <i>Optics Communications</i> , 2019 , 430, 461-466	2	26
222	Dark and singular optical solitons in birefringent fibers with Kundu E ckhaus equation by undetermined coefficients. <i>Optik</i> , 2019 , 181, 499-502	2.5	8

221	Exact chirped singular soliton solutions of Triki-Biswas equation. <i>Optik</i> , 2019 , 181, 338-342	2.5	65
220	Bright optical solitons for Lakshmanan Porsezian Daniel model with spatio-temporal dispersion by improved Adomian decomposition method. <i>Optik</i> , 2019 , 181, 891-897	2.5	12
219	Bright optical solitons of Chen-Lee-Liu equation with improved Adomian decomposition method. <i>Optik</i> , 2019 , 181, 964-970	2.5	16
218	Self-similar optical solitons with continuous-wave background in a quadraticable object non-centrosymmetric waveguide. <i>Optics Communications</i> , 2019 , 437, 392-398	2	24
217	Solitons in nonlinear directional couplers with optical metamaterials by exp(III))-expansion. <i>Optik</i> , 2019 , 179, 443-462	2.5	15
216	Nonlinear control of M-typed solitons in dispersion management systems. <i>Optik</i> , 2019 , 179, 624-627	2.5	8
215	Optical solitons pertutabation with Fokas-Lenells equation by exp(II(I))-expansion method. <i>Optik</i> , 2019 , 179, 341-345	2.5	16
214	Dispersive solitons in optical metamaterials having parabolic form of nonlinearity. <i>Optik</i> , 2019 , 179, 10	0 2. ţ01	810
213	Interactions between M-typed solitons based on nonlinear optimization in dispersion management systems. <i>Optik</i> , 2019 , 182, 144-147	2.5	4
212	Exact optical solitons in metamaterials with anti-cubic law of nonlinearity by Lie group method. <i>Optical and Quantum Electronics</i> , 2019 , 51, 1	2.4	22
211	Solitons in optical fiber Bragg gratings with dispersive reflectivity. <i>Optik</i> , 2019 , 182, 119-123	2.5	25
210	Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized exp(())-expansion. <i>Optik</i> , 2019 , 178, 439-448	2.5	34
209	Bright soliton interactions in a (mathbf (2 +mathbf 1))-dimensional fourth-order variable-coefficient nonlinear Schrdinger equation for the Heisenberg ferromagnetic spin chain. <i>Nonlinear Dynamics</i> , 2019 , 95, 983-994	5	31
208	Stochastic perturbation of optical Gaussons with bandpass filters and multi-photon absorption. <i>Optik</i> , 2019 , 178, 297-300	2.5	7
207	Conservation laws for optical solitons with non-local nonlinearity. <i>Optik</i> , 2019 , 178, 846-849	2.5	2
206	Stochastic perturbation of optical solitons having anti-cubic nonlinearity with bandpass filters and multi-photon absorption. <i>Optik</i> , 2019 , 178, 1120-1124	2.5	16
205	Application of the ITEM for solving three nonlinear evolution equations arising in fluid mechanics. <i>Nonlinear Dynamics</i> , 2019 , 95, 669-684	5	9
204	Optical solitons in birefringent fibers with Kundu-Eckhaus equation. <i>Optik</i> , 2019 , 178, 550-556	2.5	22

(2018-2019)

203	Stable propagation of optical solitons in fiber lasers by using symbolic computation. <i>Optik</i> , 2019 , 178, 142-145	2.5	6
202	Optical solitons in birefringent fibers with weak non-local nonlinearity using two forms of integration architecture. <i>Optik</i> , 2019 , 178, 669-680	2.5	14
201	Optical soliton molecules in birefringent fibers having weak non-local nonlinearity and four-wave mixing with a couple of strategic integration architectures. <i>Optik</i> , 2019 , 179, 927-940	2.5	11
200	Optical soliton perturbation with Fokas Lenells equation by mapping methods. <i>Optik</i> , 2019 , 178, 104-11	02.5	28
199	Chirped singular and combo optical solitons for Chenlleelliu equation with three forms of integration architecture. <i>Optik</i> , 2019 , 178, 172-177	2.5	14
198	Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. <i>Journal of Advanced Research</i> , 2019 , 15, 69-76	13	97
197	One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrdinger equation. <i>Nonlinear Dynamics</i> , 2019 , 95, 369-380	5	68
196	Chirped envelope optical solitons for KaupNewell equation. <i>Optik</i> , 2019 , 177, 1-7	2.5	22
195	Interaction properties of solitonics in inhomogeneous optical fibers. <i>Nonlinear Dynamics</i> , 2019 , 95, 557	-563	91
194	Optical solitons and group invariant solutions to LakshmananBorsezianDaniel model in optical fibers and PCF. <i>Optik</i> , 2018 , 160, 86-91	2.5	28
193	Optical network topology with DWDM technology for log law medium. <i>Optik</i> , 2018 , 160, 353-360	2.5	12
192	Analytic study on interactions of some types of solitary waves. <i>Optik</i> , 2018 , 164, 132-137	2.5	24
191	Solitons for perturbed GerdjikovIvanov equation in optical fibers and PCF by extended KudryashovII method. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	34
190	Optical solitons in parabolic law medium with weak non-local nonlinearity using modified extended direct algebraic method. <i>Optik</i> , 2018 , 161, 180-186	2.5	13
189	Dispersive optical solitons with SchrdingerHirota model by trial equation method. <i>Optik</i> , 2018 , 162, 35-41	2.5	31
188	Optical solitons with Lakshmanan P orsezian D aniel model by modified extended direct algebraic method. <i>Optik</i> , 2018 , 162, 228-236	2.5	29
187	Optical soliton perturbation with Radhakrishnan K undullakshmanan equation by Lie group analysis. <i>Optik</i> , 2018 , 163, 137-141	2.5	34
186	Dispersive optical solitons with differential group delay by a couple of integration schemes. <i>Optik</i> , 2018 , 162, 108-120	2.5	16

Chirped optical solitons of Chenleelliu equation by extended trial equation scheme. Optik, 2018,

2.5

156, 999-1006

167	Optical soliton perturbation with full nonlinearity by trial equation method. Optik, 2018, 157, 1366-137	5 2.5	35
166	Optical solitons with Lakshmanan Porsezian Daniel model using a couple of integration schemes. <i>Optik</i> , 2018 , 158, 705-711	2.5	50
165	Optical soliton perturbation for Gerdjikov I vanov equation by extended trial equation method. <i>Optik</i> , 2018 , 158, 747-752	2.5	24
164	Dispersive optical solitons with differential group delay by extended trial equation method. <i>Optik</i> , 2018 , 158, 790-798	2.5	11
163	Conservation laws for perturbed solitons in optical metamaterials. <i>Results in Physics</i> , 2018 , 8, 898-902	3.7	7
162	Resonant optical solitons with perturbation terms and fractional temporal evolution using improved tan (?([/2)-expansion method and exp function approach. <i>Optik</i> , 2018 , 158, 933-939	2.5	38
161	Optical soliton perturbation with full nonlinearity for Kundu E ckhaus equation by modified simple equation method. <i>Optik</i> , 2018 , 157, 1376-1380	2.5	63
160	Chirped dark solitons in optical metamaterials. <i>Optik</i> , 2018 , 158, 312-315	2.5	14
159	Optical soliton perturbation for complex Ginzburg[landau equation with modified simple equation method. <i>Optik</i> , 2018 , 158, 399-415	2.5	68
158	Resonant optical soliton perturbation with anti-cubic nonlinearity by extended trial function method. <i>Optik</i> , 2018 , 156, 784-790	2.5	11
157	Bright, dark and W-shaped solitons with extended nonlinear Schrdinger's equation for odd and even higher-order terms. <i>Superlattices and Microstructures</i> , 2018 , 114, 53-61	2.8	39
156	Travelling wave solutions of the Korteweg-de Vries equation with dual-power law nonlinearity using the improved tan(?([/2)-expansion method. <i>Optik</i> , 2018 , 156, 498-504	2.5	3
155	Optical soliton perturbation with exotic non-Kerr law nonlinearities. <i>Optik</i> , 2018 , 158, 1370-1379	2.5	9
154	Chirped dispersive bright and singular optical solitons with Schr∄inger⊞irota equation. <i>Optik</i> , 2018 , 168, 192-195	2.5	5
153	Solitons in optical metamaterials having parabolic law nonlinearity with detuning effect and Raman scattering. <i>Optik</i> , 2018 , 164, 606-609	2.5	3
152	Optical soliton perturbation of FokasIlenells equation with two integration schemes. <i>Optik</i> , 2018 , 165, 111-116	2.5	25
151	Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. <i>Optik</i> , 2018 , 165, 233-239	2.5	40
150	Optical solitons with differential group delay for coupled Fokas Lenells equation using two integration schemes. <i>Optik</i> , 2018 , 165, 74-86	2.5	86

149	Optical soliton perturbation with FokasIlenells equation using three exotic and efficient integration schemes. <i>Optik</i> , 2018 , 165, 288-294	2.5	54
148	Optical solitons having weak non-local nonlinearity by two integration schemes. <i>Optik</i> , 2018 , 164, 380-	3 84 5	48
147	Optical solitons of Lakshmanan Porsezian Daniel model with a couple of nonlinearities. <i>Optik</i> , 2018 , 164, 414-423	2.5	41
146	Optical soliton perturbation with fractional temporal evolution by extended G?/G-expansion method. <i>Optik</i> , 2018 , 161, 301-320	2.5	12
145	Optical solitons with modified extended direct algebraic method for quadratic-cubic nonlinearity. <i>Optik</i> , 2018 , 162, 161-171	2.5	13
144	Optical soliton perturbation with fractional temporal evolution by generalized Kudryashov's method. <i>Optik</i> , 2018 , 164, 303-310	2.5	12
143	Optical solitons in parabolic law medium with weak non-local nonlinearity by extended trial function method. <i>Optik</i> , 2018 , 163, 56-61	2.5	9
142	Optical soliton perturbation for RadhakrishnanKundullakshmanan equation with a couple of integration schemes. <i>Optik</i> , 2018 , 163, 126-136	2.5	74
141	Novel singular solitons in optical metamaterials for self-steepening effect. <i>Optik</i> , 2018 , 154, 545-550	2.5	8
140	Chirped w-shaped optical solitons of Chenlleelliu equation. <i>Optik</i> , 2018 , 155, 208-212	2.5	25
139	Optical solitons and conservation law of Kundu E ckhaus equation. <i>Optik</i> , 2018 , 154, 551-557	2.5	101
138	Resonant optical solitons with parabolic and dual-power laws by semi-inverse variational principle. <i>Journal of Modern Optics</i> , 2018 , 65, 179-184	1.1	47
137	Embedded solitons with (2) and (B) nonlinear susceptibilities by extended trial equation method. <i>Optik</i> , 2018 , 154, 1-9	2.5	2
136	Gray and black optical solitons with quintic nonlinearity. <i>Optik</i> , 2018 , 154, 354-359	2.5	10
135	Sub pico-second chirp-free optical solitons with Kaup-Newell equation using a couple of strategic algorithms. <i>Optik</i> , 2018 , 172, 766-771	2.5	17
134	New exact solutions of nonlinear conformable time-fractional Phi-4 equation. <i>Chinese Journal of Physics</i> , 2018 , 56, 2805-2816	3.5	73
133	Optical soliton perturbation with Kundu E ckhaus equation by exp(I (I))-expansion scheme and G?/G2-expansion method. <i>Optik</i> , 2018 , 172, 79-85	2.5	13
132	Chirped singular and combo optical solitons for Gerdjikov I vanov equation using three integration forms. <i>Optik</i> , 2018 , 172, 144-149	2.5	8

131	Optical solitons with polarization-mode dispersion for coupled Fokas Lenells equation with two forms of integration architecture. <i>Optical and Quantum Electronics</i> , 2018 , 50, 1	2.4	15
130	Propagation properties of dipole-managed solitons through an inhomogeneous cubicquinticEeptic medium. <i>Optics Communications</i> , 2018 , 425, 64-70	2	43
129	Chirped singular solitons for Chen-Lee-Liu equation in optical fibers and PCF. <i>Optik</i> , 2018 , 157, 156-160	2.5	29
128	Optical soliton solutions to Fokas-lenells equation using some different methods. <i>Optik</i> , 2018 , 173, 21-	3 1 .5	85
127	Optical soliton perturbation with differential group delay and parabolic law nonlinearity using exp(2()) -expansion method. <i>Optik</i> , 2018 , 172, 826-831	2.5	2
126	Conservation laws for optical solitons with Chenlleelliu equation. <i>Optik</i> , 2018 , 174, 195-198	2.5	29
125	Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities. <i>Optik</i> , 2018 , 173, 249-262	2.5	19
124	The unified method for conformable time fractional Schroldinger equation with perturbation terms. <i>Chinese Journal of Physics</i> , 2018 , 56, 2500-2506	3.5	107
123	Optical solitons with anti-cubic nonlinearity by mapping methods. <i>Optik</i> , 2018 , 170, 520-526	2.5	29
122	Optical solitons in birefringent fibers for LakshmananPorsezianDaniel model using exp(P(I))-expansion method. <i>Optik</i> , 2018 , 170, 555-560	2.5	24
121	Optical solitons with polarization mode dispersion for LakshmananPorsezianDaniel model by the method of undetermined coefficients. <i>Optik</i> , 2018 , 171, 114-119	2.5	22
120	Interactions of vector anti-dark solitons for the coupled nonlinear Schrainger equation in inhomogeneous fibers. <i>Nonlinear Dynamics</i> , 2018 , 94, 1351-1360	5	62
119	New Optical Solitons of the Longitudinal Wave Equation in a Magnetoelectro-Elastic Circular Rod. <i>Acta Physica Polonica A</i> , 2018 , 133, 20-22	0.6	6
118	Chiral Solitons with Bohm Potential by Modified Simple Equation Method and Trial Equation Scheme. <i>Acta Physica Polonica A</i> , 2018 , 134, 1120-1125	0.6	5
117	Optical Soliton in Nonlocal Nonlinear Medium with Cubic-Quintic Nonlinearities and Spatio-Temporal Dispersion. <i>Acta Physica Polonica A</i> , 2018 , 134, 1204-1210	0.6	5
116	Group Analysis and Exact Soliton Solutions to a New (3+1)-Dimensional Generalized Kadomtsev-Petviashvili Equation in Fluid Mechanics. <i>Acta Physica Polonica A</i> , 2018 , 134, 564-569	0.6	3
115	Resonant optical solitons with anti-cubic nonlinearity. <i>Optik</i> , 2018 , 157, 525-531	2.5	24
114	Perturbed resonant 1-soliton solution with anti-cubic nonlinearity by Riccati-Bernoulli sub-ODE method. <i>Optik</i> , 2018 , 156, 346-350	2.5	9

0.8

2.8

56

94

Physics and Materials, 2017, 26, 1750005

Microstructures, 2017, 107, 197-218

Solitons in magneto-optic waveguides by extended trial function scheme. Superlattices and

97

(2017-2017)

New envelope solitons for Gerdjikov-Ivanov model in nonlinear fiber optics. <i>Superlattices and Microstructures</i> , 2017 , 111, 326-334	2.8	46
Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. <i>Optik</i> , 2017 , 142, 73-76	2.5	87
Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. <i>Optik</i> , 2017 , 143, 131-134	2.5	90
Optical solitons in DWDM system by extended trial equation method. <i>Optik</i> , 2017 , 141, 157-167	2.5	54
Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity. <i>Superlattices and Microstructures</i> , 2017 , 109, 588-598	2.8	97
Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. <i>Optik</i> , 2017 , 142, 77-81	2.5	29
Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. <i>Optik</i> , 2017 , 139, 16-19	2.5	76
The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics. Journal of Modern Optics, 2017 , 64, 1677-1682	1.1	43
Explicit solitons in the parabolic law nonlinear negative-index materials. <i>Nonlinear Dynamics</i> , 2017 , 88, 595-607	5	58
Soliton solutions for Davydov solitons in Helix proteins. <i>Superlattices and Microstructures</i> , 2017 , 102, 323-341	2.8	30
Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. <i>Optik</i> , 2017 , 131, 964-976	2.5	55
Dispersive optical solitons in DWDM systems. <i>Optik</i> , 2017 , 132, 210-215	2.5	24
Analytical study of solitons in the fiber waveguide with power law nonlinearity. <i>Superlattices and Microstructures</i> , 2017 , 101, 493-506	2.8	23
Optical solitons of some fractional differential equations in nonlinear optics. <i>Journal of Modern Optics</i> , 2017 , 64, 2345-2349	1.1	33
Dipole solitons in an extended nonlinear Schrlinger's equation with higher-order even and odd terms. <i>Optik</i> , 2017 , 145, 644-649	2.5	16
Conservation laws for cubicquartic optical solitons in Kerr and power law media. <i>Optik</i> , 2017 , 145, 650-6	5 5 .45	112
Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations. <i>Optik</i> , 2017 , 145, 14-17	2.5	111
	Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. Optik, 2017, 142, 73-76 Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 143, 131-134 Optical solitons in DWDM system by extended trial equation method. Optik, 2017, 141, 157-167 Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity. Superlattices and Microstructures, 2017, 109, 588-598 Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. Optik, 2017, 142, 77-81 Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 139, 16-19 The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics. Journal of Modern Optics, 2017, 64, 1677-1682 Explicit solitons in the parabolic law nonlinear negative-index materials. Nonlinear Dynamics, 2017, 88, 595-607 Soliton solutions for Davydov solitons in Bhelix proteins. Superlattices and Microstructures, 2017, 102, 323-341 Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. Optik, 2017, 131, 964-976 Dispersive optical solitons in the fiber waveguide with power law nonlinearity. Superlattices and Microstructures, 2017, 101, 493-506 Optical solitons of some fractional differential equations in nonlinear optics. Journal of Modern Optics, 2017, 104, 2345-2349 Dipole solitons in an extended nonlinear Schräinger's equation with higher-order even and odd terms. Optik, 2017, 145, 644-649 Conservation laws for cubicquartic optical solitons in Kerr and power law media. Optik, 2017, 145, 650-66	Perturbation theory and optical soliton cooling with anti-cubic nonlinearity. Optik, 2017, 142, 73-76 2.5 Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 143, 131-134 2.5 Optical solitons in DWDM system by extended trial equation method. Optik, 2017, 141, 157-167 2.5 Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity. Superlattices and Microstructures, 2017, 109, 588-598 Chirped optical solitons in nano optical fibers with dual-power law nonlinearity. Optik, 2017, 142, 77-81 2.5 Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle. Optik, 2017, 139, 16-19 The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics. Journal of Modern Optics, 2017, 64, 1677-1682 Explicit solitons in the parabolic law nonlinear negative-index materials. Nonlinear Dynamics, 2017, 88, 595-607 Soliton solutions for Davydov solitons in thelix proteins. Superlattices and Microstructures, 2017, 102, 323-341 Optical solitons in birefringent fibers with Kerr nonlinearity by exp-function method. Optik, 2017, 131, 964-976 Dispersive optical solitons in the fiber waveguide with power law nonlinearity. Superlattices and Microstructures, 2017, 101, 493-506 Optical solitons of some fractional differential equations in nonlinear optics. Journal of Modern Optics, 2017, 64, 2345-2349 Dipole solitons in an extended nonlinear Schr@inger's equation with higher-order even and odd

and extended G?/G-expansion scheme. Optik, 2016, 127, 10490-10497

modified simple equation method. Optik, 2016, 127, 11450-11459

Soliton solutions to resonant nonlinear schrodinger's equation with time-dependent coefficients by

2.5

2.5

48

50

61

59	Optical solitons in birefringent fibers by extended trial equation method. <i>Optik</i> , 2016 , 127, 11311-1132	. 5 2.5	15
58	Optical solitons with higher order dispersions in parabolic law medium by trial solution approach. <i>Optik</i> , 2016 , 127, 11306-11310	2.5	12
57	Singular Optical Solitons in Nonlinear Directional Couplers. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 4660-4664	0.3	2
56	Bright and Dark Optical Solitons with Kerr and Parabolic Law Nonlinearities by Series Solution Approach. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 58-61	0.3	1
55	Singular optical solitons in birefringent nano-fibers. <i>Optik</i> , 2016 , 127, 8995-9000	2.5	29
54	Thirring combo-solitons with cubic nonlinearity and spatio-temporal dispersion. <i>Waves in Random and Complex Media</i> , 2016 , 26, 204-210	1.9	79
53	Optical solitons with BiswasMilovic equation by extended trial equation method. <i>Nonlinear Dynamics</i> , 2016 , 84, 1883-1900	5	101
52	Analytical 1-solitons in a nonlinear medium with higher-order dispersion and nonlinearities. <i>Waves in Random and Complex Media</i> , 2016 , 26, 197-203	1.9	8
51	Bright, dark, and singular solitons in optical fibers with spatio-temporal dispersion and spatially dependent coefficients. <i>Journal of Modern Optics</i> , 2016 , 63, 950-954	1.1	86
50	Optical solitons for BiswasMilovic model with Kerr law and parabolic law nonlinearities. <i>Nonlinear Dynamics</i> , 2016 , 84, 677-681	5	40
49	Analytical study of solitons in magneto-electro-elastic circular rod. Nonlinear Dynamics, 2016, 83, 1403-	1 <u></u> 408	27
48	Soliton and soliton-like solutions to the modified Zakharov R uznetsov equation in nonlinear transmission line. <i>Nonlinear Dynamics</i> , 2016 , 83, 1429-1435	5	18
47	Singular Optical Solitons in Parabolic and Dual-Power Law Media. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 4825-4828	0.3	1
46	Optical Solitons in Nano-Fibers with Fractional Temporal Evolution. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 5361-5374	0.3	18
45	Optical Solitons in Cascaded System by Extended Trial Function Method. <i>Journal of Computational and Theoretical Nanoscience</i> , 2016 , 13, 5394-5398	0.3	11
44	Dispersive Optical Solitons in Nanofibers with Schrdinger-Hirota Equation. <i>Journal of Nanoelectronics and Optoelectronics</i> , 2016 , 11, 382-387	1.3	26
43	Analytical study of solitons in non-Kerr nonlinear negative-index materials. <i>Nonlinear Dynamics</i> , 2016 , 86, 623-638	5	85
42	Analytical Solitons for Langmuir Waves in Plasma Physics with Cubic Nonlinearity and Perturbations. <i>Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences</i> , 2016 , 71, 807-815	1.4	11

		Qin Zhou	
41	Optical solitons in nano-fibers with spatio-temporal dispersion by trial solution method. <i>Optik</i> , 2016 , 127, 7250-7257	2.5	92
40	Optical solitons with BiswasMilovic equation by extended G?/G-expansion method. <i>Optik</i> , 2016 , 127, 6277-6290	2.5	51
39	Optical solitons with complex Ginzburg[landau equation. <i>Nonlinear Dynamics</i> , 2016 , 85, 1979-2016	5	110
38	Analytical study of solitons to BiswasMilovic model in nonlinear optics. <i>Journal of Modern Optics</i> , 2016 , 63, 2131-2137	1.1	31
37	Solitons in optical metamaterials with fractional temporal evolution. <i>Optik</i> , 2016 , 127, 10879-10897	2.5	40
36	Exact solitary wave solutions to the generalized Fisher equation. <i>Optik</i> , 2016 , 127, 12085-12092	2.5	41
35	Combined optical solitons with parabolic law nonlinearity and spatio-temporal dispersion. <i>Journal of Modern Optics</i> , 2015 , 62, 483-486	1.1	29
34	Analytical study of Thirring optical solitons with parabolic law nonlinearity and spatio-temporal dispersion. <i>European Physical Journal Plus</i> , 2015 , 130, 1	3.1	97
33	Optical solitons in media with time-modulated nonlinearities and spatiotemporal dispersion. <i>Nonlinear Dynamics</i> , 2015 , 80, 983-987	5	60
32	Dark optical solitons in quadratic nonlinear media with spatio-temporal dispersion. <i>Nonlinear Dynamics</i> , 2015 , 81, 733-738	5	47
31	Optical solitons in nonlinear directional couplers with G?/G-expansion scheme. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2015 , 24, 1550017	0.8	24
30	Thirring optical solitons in birefringent B ers with spatio-temporal dispersion and Kerr law nonlinearity. <i>Laser Physics</i> , 2015 , 25, 015402	1.2	75
29	Optical solitons in medium with parabolic law nonlinearity and higher order dispersion. <i>Waves in Random and Complex Media</i> , 2015 , 25, 52-59	1.9	82
28	Optical Solitons with Higher Order Dispersion and Full Nonlinearity in Non-Kerr Law Media. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 4632-4645	0.3	1
27	Optical Gaussons in Dual-Core Nano-Fibers. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5745-5748	0.3	3
26	Analytical Study of Combo-Solitons in Optical Metamaterials with Cubic-Quintic Nonlinearity. Journal of Computational and Theoretical Nanoscience, 2015 , 12, 5278-5282	0.3	1
25	Optical Solitons with Spatio-Temporal Dispersion by G?/G-Expansion Method. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5622-5629	0.3	
24	Singular and Topological Solitons in Optical Metamaterials by Kudryashov∄ Method and G?/G-Expansion Scheme. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5630-5635	0.3	3

(2012-2015)

23	Optical Solitons in Birefringent Fibers with Adomian Decomposition Method. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5846-5853	0.3	10
22	Solitons in Optical Metamaterials with Trial Solution Approach and Bāklund Transform of Riccati Equation. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 5940-5948	0.3	37
21	Exact solitons in a medium with competing weakly nonlocal nonlinearity and parabolic law nonlinearity. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2015 , 24, 1550049	0.8	6
20	Bright, dark and singular optical solitons in a cascaded system. <i>Laser Physics</i> , 2015 , 25, 025402	1.2	89
19	Exact optical solitons in metamaterials with cubicquintic nonlinearity and third-order dispersion. <i>Nonlinear Dynamics</i> , 2015 , 80, 1365-1371	5	69
18	Nematicons in Liquid Crystals. <i>Journal of Computational and Theoretical Nanoscience</i> , 2015 , 12, 4667-46	73 .3	9
17	Analytical solutions and modulation instability analysis to the perturbed nonlinear Schrdinger equation. <i>Journal of Modern Optics</i> , 2014 , 61, 500-503	1.1	52
16	Theoretical study of dark solitons in media with competing nonlocal nonlinearities and local quintic nonlinearity. <i>Journal of Modern Optics</i> , 2014 , 61, 1465-1469	1.1	12
15	Optical solitons in the parabolic law media with high-order dispersion. <i>Optik</i> , 2014 , 125, 5432-5435	2.5	33
14	Analytic study on solitons in the nonlinear fibers with time-modulated parabolic law nonlinearity and Raman effect. <i>Optik</i> , 2014 , 125, 3142-3144	2.5	35
13	Exact solitons in three-dimensional weakly nonlocal nonlinear time-modulated parabolic law media. <i>Optics and Laser Technology</i> , 2013 , 51, 32-35	4.2	33
12	Spatial optical solitons in fifth order and seventh order weakly nonlocal nonlinear media. <i>Optik</i> , 2013 , 124, 5683-5686	2.5	33
11	Optical solitons in gas-filled, hollow-core photonic crystal fibers with inter-modal dispersion and self-steepening. <i>Journal of Modern Optics</i> , 2013 , 60, 854-859	1.1	47
10	Analytical study of optical solitons in media with Kerr and parabolic-law nonlinearities. <i>Journal of Modern Optics</i> , 2013 , 60, 1652-1657	1.1	54
9	Optical soliton perturbation with time- and space-dependent dissipation (or gain) and nonlinear dispersion in Kerr and non-Kerr media. <i>Optik</i> , 2013 , 124, 2368-2372	2.5	15
8	Adiabatic self-induced transparency in GaN/AlN inhomogeneously broadened quantum-dot ensemble. <i>Optics and Laser Technology</i> , 2013 , 45, 768-774	4.2	3
7	Exact solutions of the cubic-quintic nonlinear optical transmission equation with higher-order dispersion terms and self-steepening term. <i>Journal of Modern Optics</i> , 2012 , 59, 57-60	1.1	37
6	Solitary propagation effect of a well-defined chirped femtosecond laser pulse in a resonance-absorbing medium. <i>Physical Review A</i> , 2012 , 86,	2.6	7

5	Nonlinear control of logic structure of all-optical logic devices using soliton interactions. <i>Nonlinear Dynamics</i> ,1	5	19
4	Soliton fusion and fission for the high-order coupled nonlinear Schrdinger system in fiber lasers. <i>Chinese Physics B</i> ,	1.2	9
3	Stable transmission characteristics of double-hump solitons for the coupled Manakov equations in fiber lasers. <i>Nonlinear Dynamics</i> ,1	5	17
2	Study on weakening optical soliton interaction in nonlinear optics. <i>Nonlinear Dynamics</i> ,1	5	1
1	Interaction properties of double-hump solitons in the dispersion decreasing fiber. <i>Nonlinear Dynamics</i> ,1	5	0