## Carla Oliveira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1600301/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biological properties of extracellular vesicles and their physiological functions. Journal of<br>Extracellular Vesicles, 2015, 4, 27066.                                                               | 5.5 | 3,973     |
| 2  | Hereditary Diffuse Gastric Cancer Syndrome. JAMA Oncology, 2015, 1, 23.                                                                                                                                | 3.4 | 540       |
| 3  | Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. Journal of Medical Genetics, 2010, 47, 436-444.                            | 1.5 | 495       |
| 4  | Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline <i>CDH1</i> mutation carriers. Journal of Medical Genetics, 2015, 52, 361-374.                             | 1.5 | 479       |
| 5  | Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology, 2001, 121, 823-829.                                                        | 0.6 | 402       |
| 6  | Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano, 2016, 10,<br>3886-3899.                                                                                     | 7.3 | 397       |
| 7  | Founder and Recurrent CDH1 Mutations in Families With Hereditary Diffuse Gastric Cancer. JAMA -<br>Journal of the American Medical Association, 2007, 297, 2360.                                       | 3.8 | 394       |
| 8  | A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nature Genetics, 2009, 41, 365-370.                                                                                 | 9.4 | 355       |
| 9  | Familial gastric cancer: overview and guidelines for management. Journal of Medical Genetics, 1999, 36, 873-80.                                                                                        | 1.5 | 344       |
| 10 | The prevalence of PIK3CA mutations in gastric and colon cancer. European Journal of Cancer, 2005, 41, 1649-1654.                                                                                       | 1.3 | 314       |
| 11 | Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet<br>Oncology, The, 2015, 16, e60-e70.                                                               | 5.1 | 311       |
| 12 | E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma.<br>Oncogene, 2001, 20, 1525-1528.                                                                 | 2.6 | 252       |
| 13 | Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncology, The, 2020, 21,<br>e386-e397.                                                                                 | 5.1 | 237       |
| 14 | The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nature<br>Communications, 2018, 9, 490.                                                                             | 5.8 | 198       |
| 15 | Germline CDH1 deletions in hereditary diffuse gastric cancer families. Human Molecular Genetics, 2009, 18, 1545-1555.                                                                                  | 1.4 | 185       |
| 16 | Anti-miRNA oligonucleotides: A comprehensive guide for design. RNA Biology, 2018, 15, 338-352.                                                                                                         | 1.5 | 172       |
| 17 | Identification of CDH1 germline missense mutations associated with functional inactivation of the<br>E-cadherin protein in young gastric cancer probands. Human Molecular Genetics, 2003, 12, 575-582. | 1.4 | 167       |
| 18 | Guidelines for the Li–Fraumeni and heritable TP53-related cancer syndromes. European Journal of<br>Human Genetics, 2020, 28, 1379-1386.                                                                | 1.4 | 167       |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene, 2007, 26, 158-163.                                                                                                 | 2.6 | 164       |
| 20 | Germline E-cadherin mutations in familial lobular breast cancer. Journal of Medical Genetics, 2007, 44, 726-731.                                                                                        | 1.5 | 162       |
| 21 | Cleft lip/palate and CDH1/E-cadherin mutations in families with hereditary diffuse gastric cancer.<br>Journal of Medical Genetics, 2005, 43, 138-142.                                                   | 1.5 | 161       |
| 22 | BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene, 2005, 24, 3995-3998.                                                     | 2.6 | 155       |
| 23 | Screening E-cadherin in gastric cancer families reveals germline mutations only in hereditary diffuse gastric cancer kindred. Human Mutation, 2002, 19, 510-517.                                        | 1.1 | 153       |
| 24 | Biomarkers for gastric cancer: prognostic, predictive or targets of therapy?. Virchows Archiv Fur<br>Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 464, 367-378.              | 1.4 | 148       |
| 25 | Somatic Mutations and Deletions of the E-Cadherin Gene Predict Poor Survival of Patients With Gastric Cancer. Journal of Clinical Oncology, 2013, 31, 868-875.                                          | 0.8 | 145       |
| 26 | The Clinicopathological Features of Gastric Carcinomas with Microsatellite Instability May Be<br>Mediated by Mutations of Different "Target Genes― American Journal of Pathology, 1998, 153, 1211-1219. | 1.9 | 144       |
| 27 | Quantification of Epigenetic and Genetic 2nd Hits in CDH1 During Hereditary Diffuse Gastric Cancer<br>Syndrome Progression. Gastroenterology, 2009, 136, 2137-2148.                                     | 0.6 | 142       |
| 28 | Genetics, Pathology, and Clinics of Familial Gastric Cancer. International Journal of Surgical<br>Pathology, 2006, 14, 21-33.                                                                           | 0.4 | 141       |
| 29 | Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline <i>CDH1</i> sequence variants. Human Mutation, 2018, 39, 1553-1568.                                             | 1.1 | 138       |
| 30 | Epithelial E- and P-cadherins: Role and clinical significance in cancer. Biochimica Et Biophysica Acta:<br>Reviews on Cancer, 2012, 1826, 297-311.                                                      | 3.3 | 137       |
| 31 | BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency.<br>Oncogene, 2003, 22, 9192-9196.                                                                             | 2.6 | 132       |
| 32 | Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Human Molecular Genetics, 2004, 13, 2303-2311.                 | 1.4 | 127       |
| 33 | Lack of microRNAâ€101 causes Eâ€cadherin functional deregulation through EZH2 upâ€regulation in<br>intestinal gastric cancer. Journal of Pathology, 2012, 228, 31-44.                                   | 2.1 | 125       |
| 34 | BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: Primary or secondary genetic events in colorectal carcinogenesis?. BMC Cancer, 2008, 8, 255.                                  | 1.1 | 124       |
| 35 | Mechanisms and sequelae of Eâ€cadherin silencing in hereditary diffuse gastric cancer. Journal of Pathology, 2008, 216, 295-306.                                                                        | 2.1 | 122       |
| 36 | <i>CDH1</i> â€related hereditary diffuse gastric cancer syndrome: Clinical variations and implications for counseling. International Journal of Cancer, 2012, 131, 367-376.                             | 2.3 | 110       |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Heterogeneity in Gastric Cancer: From Pure Morphology to Molecular Classifications. Pathobiology, 2018, 85, 50-63.                                                                                           | 1.9 | 101       |
| 38 | Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer. Human Molecular<br>Genetics, 2010, 19, 943-952.                                                                                   | 1.4 | 100       |
| 39 | E-Cadherin (CDH1) and p53 rather than SMAD4 and Caspase-10 germline mutations contribute to genetic predisposition in Portuguese gastric cancer patients. European Journal of Cancer, 2004, 40, 1897-1903.   | 1.3 | 97        |
| 40 | Gastric cancer: adding glycosylation to the equation. Trends in Molecular Medicine, 2013, 19, 664-676.                                                                                                       | 3.5 | 95        |
| 41 | CDX2 regulation by the RNA-binding protein MEX3A: impact on intestinal differentiation and stemness.<br>Nucleic Acids Research, 2013, 41, 3986-3999.                                                         | 6.5 | 94        |
| 42 | Loss and Recovery of Mgat3 and GnT-III Mediated E-cadherin N-glycosylation Is a Mechanism Involved in<br>Epithelial-Mesenchymal-Epithelial Transitions. PLoS ONE, 2012, 7, e33191.                           | 1.1 | 93        |
| 43 | Intragenic deletion of CDH1 as the inactivating mechanism of the wild-type allele in an HDGC tumour.<br>Oncogene, 2004, 23, 2236-2240.                                                                       | 2.6 | 92        |
| 44 | Oncogenic mutations in gastric cancer with microsatellite instability. European Journal of Cancer, 2011, 47, 443-451.                                                                                        | 1.3 | 92        |
| 45 | 3D Cellular Architecture Affects MicroRNA and Protein Cargo of Extracellular Vesicles. Advanced Science, 2019, 6, 1800948.                                                                                   | 5.6 | 91        |
| 46 | Loss of Heterozygosity and Promoter Methylation, but not Mutation, May Underlie Loss of TFF1 in<br>Gastric Carcinoma. Laboratory Investigation, 2002, 82, 1319-1326.                                         | 1.7 | 88        |
| 47 | ActivatedBRAFtargets proximal colon tumors with mismatch repair deficiency andMLH1inactivation.<br>Genes Chromosomes and Cancer, 2004, 39, 138-142.                                                          | 1.5 | 87        |
| 48 | Molecular pathology of familial gastric cancer, with an emphasis on hereditary diffuse gastric cancer. Journal of Clinical Pathology, 2007, 61, 25-30.                                                       | 1.0 | 83        |
| 49 | The NMD mRNA surveillance pathway downregulates aberrant E-cadherin transcripts in gastric cancer cells and in CDH1 mutation carriers. Oncogene, 2008, 27, 4255-4260.                                        | 2.6 | 83        |
| 50 | E-cadherin germline missense mutations and cell phenotype: evidence for the independence of cell invasion on the motile capabilities of the cells. Human Molecular Genetics, 2003, 12, 3007-3016.            | 1.4 | 79        |
| 51 | Eâ€cadherin dysfunction in gastric cancer ―Cellular consequences, clinical applications and open<br>questions. FEBS Letters, 2012, 586, 2981-2989.                                                           | 1.3 | 74        |
| 52 | E-cadherin genetic screening and clinico-pathologic characteristics of early onset gastric cancer.<br>European Journal of Cancer, 2011, 47, 631-639.                                                         | 1.3 | 69        |
| 53 | Specific Clinical and Biological Features Characterize Inflammatory Bowel Disease–Associated<br>Colorectal Cancers Showing Microsatellite Instability. Journal of Clinical Oncology, 2007, 25,<br>4231-4238. | 0.8 | 68        |
| 54 | Hereditary gastric cancer. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2009, 23, 147-157.                                                                                           | 1.0 | 66        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | De novo expression of CD44 variants in sporadic and hereditary gastric cancer. Laboratory<br>Investigation, 2010, 90, 1604-1614.                                                                                        | 1.7 | 66        |
| 56 | B-RafV600E Cooperates With Alternative Spliced Rac1b to Sustain Colorectal Cancer Cell Survival.<br>Gastroenterology, 2008, 135, 899-906.                                                                               | 0.6 | 65        |
| 57 | MSI phenotype and MMR alterations in familial and sporadic gastric cancer. International Journal of Cancer, 2011, 128, 1606-1613.                                                                                       | 2.3 | 65        |
| 58 | tRNA Deregulation and Its Consequences inÂCancer. Trends in Molecular Medicine, 2019, 25, 853-865.                                                                                                                      | 3.5 | 63        |
| 59 | 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple-negative breast cancer cells by CDH1-promoter demethylation. Anticancer Research, 2012, 32, 249-57.                                       | 0.5 | 63        |
| 60 | Endoplasmic reticulum quality control: a new mechanism of E-cadherin regulation and its implication in cancer. Human Molecular Genetics, 2008, 17, 3566-3576.                                                           | 1.4 | 62        |
| 61 | Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the antiâ€ŧumour therapeutic approach with doxorubicin. Journal of Extracellular Vesicles, 2016, 5, 32538.                                     | 5.5 | 62        |
| 62 | Cancer syndromes and therapy by stop-codon readthrough. Trends in Molecular Medicine, 2012, 18,<br>667-678.                                                                                                             | 3.5 | 61        |
| 63 | Monoclonal antibodies: technologies for early discovery and engineering. Critical Reviews in Biotechnology, 2018, 38, 394-408.                                                                                          | 5.1 | 61        |
| 64 | Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric<br>glycosylation pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852,<br>1928-1939.              | 1.8 | 60        |
| 65 | Germline Mutations in MAP3K6 Are Associated with Familial Gastric Cancer. PLoS Genetics, 2014, 10, e1004669.                                                                                                            | 1.5 | 57        |
| 66 | Colorectal cancer and RASSF family—A special emphasis on RASSF1A. International Journal of Cancer,<br>2013, 132, 251-258.                                                                                               | 2.3 | 54        |
| 67 | Promoter methylation of TGF? receptor I and mutation of TGF? receptor II are frequent events in MSI sporadic gastric carcinomas. Journal of Pathology, 2003, 200, 32-38.                                                | 2.1 | 53        |
| 68 | BRAF provides proliferation and survival signals in MSI colorectal carcinoma cells displaying<br><i>BRAF</i> <sup><i>V</i>600<i>E</i></sup> but not <i>KRAS</i> mutations. Journal of Pathology, 2008,<br>214, 320-327. | 2.1 | 53        |
| 69 | E-Cadherin Destabilization Accounts for the Pathogenicity of Missense Mutations in Hereditary<br>Diffuse Gastric Cancer. PLoS ONE, 2012, 7, e33783.                                                                     | 1.1 | 53        |
| 70 | A 3D in vitro model to explore the inter-conversion between epithelial and mesenchymal states during EMT and its reversion. Scientific Reports, 2016, 6, 27072.                                                         | 1.6 | 53        |
| 71 | E-Cadherin Alterations in Hereditary Disorders with Emphasis on Hereditary Diffuse Gastric Cancer.<br>Progress in Molecular Biology and Translational Science, 2013, 116, 337-359.                                      | 0.9 | 52        |
|    |                                                                                                                                                                                                                         |     |           |

Antibodies and associates: Partners in targeted drug delivery. , 2017, 177, 129-145.

52

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Methylation tolerance due to an O6-methylguanine DNA methyltransferase (MGMT) field defect in the colonic mucosa: an initiating step in the development of mismatch repair-deficient colorectal cancers. Gut, 2010, 59, 1516-1526. | 6.1 | 51        |
| 74 | CDH1 c-160a promotor polymorphism is not associated with risk of stomach cancer. International<br>Journal of Cancer, 2002, 101, 196-197.                                                                                           | 2.3 | 50        |
| 75 | Histopathological, Molecular, and Genetic Profile of Hereditary Diffuse Gastric Cancer: Current<br>Knowledge and Challenges for the Future. Advances in Experimental Medicine and Biology, 2016, 908,<br>371-391.                  | 0.8 | 47        |
| 76 | Genetic screening for hereditary diffuse gastric cancer. Expert Review of Molecular Diagnostics, 2003, 3, 201-215.                                                                                                                 | 1.5 | 46        |
| 77 | Concomitant RASSF1A hypermethylation and KRAS/BRAF mutations occur preferentially in MSI sporadic colorectal cancer. Oncogene, 2005, 24, 7630-7634.                                                                                | 2.6 | 45        |
| 78 | Pathological features of total gastrectomy specimens from asymptomatic hereditary diffuse gastric cancer patients and implications for clinical management. Histopathology, 2018, 73, 878-886.                                     | 1.6 | 45        |
| 79 | Hereditary gastric cancer: what's new? Update 2013–2018. Familial Cancer, 2019, 18, 363-367.                                                                                                                                       | 0.9 | 44        |
| 80 | MSI-L Gastric Carcinomas Share the hMLH1 Methylation Status of MSI-H Carcinomas but Not Their<br>Clinicopathological Profile. Laboratory Investigation, 2000, 80, 1915-1923.                                                       | 1.7 | 43        |
| 81 | Concurrent hypermethylation of gene promoters is associated with a MSI-H phenotype and diploidy in gastric carcinomas. European Journal of Cancer, 2003, 39, 1222-1227.                                                            | 1.3 | 43        |
| 82 | <i>CPEB1</i> , a novel gene silenced in gastric cancer: a <i>Drosophila</i> approach. Gut, 2012, 61, 1115-1123.                                                                                                                    | 6.1 | 41        |
| 83 | Phenotypic heterogeneity of hereditary diffuse gastric cancer: report of a family with early-onset<br>disease. Gastrointestinal Endoscopy, 2018, 87, 1566-1575.                                                                    | 0.5 | 41        |
| 84 | New insights into the inflamed tumor immune microenvironment of gastric cancer with lymphoid stroma: from morphology and digital analysis to gene expression. Gastric Cancer, 2019, 22, 77-90.                                     | 2.7 | 41        |
| 85 | Characterization of the P373L E-cadherin germline missense mutation and implication for clinical management. European Journal of Surgical Oncology, 2007, 33, 1061-1067.                                                           | 0.5 | 40        |
| 86 | Hereditary diffuse gastric cancer – Pathophysiology and clinical management. Bailliere's Best Practice<br>and Research in Clinical Gastroenterology, 2014, 28, 1055-1068.                                                          | 1.0 | 40        |
| 87 | Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer. Carcinogenesis, 2005, 26, 923-930.                                                                        | 1.3 | 39        |
| 88 | Molecular Characterization of ESBL-Producing Enterobacteriaceae in Northern Portugal. Scientific<br>World Journal, The, 2014, 2014, 1-6.                                                                                           | 0.8 | 39        |
| 89 | Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta<br>Biomaterialia, 2018, 81, 208-218.                                                                                               | 4.1 | 39        |
| 90 | Colorectal cancer-related mutant <i>KRAS</i> alleles function as positive regulators of autophagy.<br>Oncotarget, 2015, 6, 30787-30802.                                                                                            | 0.8 | 39        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Role of pathology in the identification of hereditary diffuse gastric cancer: report of a Portuguese<br>family. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005,<br>446, 181-184.                                                 | 1.4 | 38        |
| 92  | Expression of Lea in gastric cancer cell lines depends on FUT3 expression regulated by promoter methylation. Cancer Letters, 2006, 242, 191-197.                                                                                                                             | 3.2 | 37        |
| 93  | Role of germline aberrations affecting <i>CTNNA1</i> , <i>MAP3K6</i> and <i>MYD88</i> in gastric cancer susceptibility. Journal of Medical Genetics, 2018, 55, 669-674.                                                                                                      | 1.5 | 37        |
| 94  | E-cadherin missense mutations, associated with hereditary diffuse gastric cancer (HDGC) syndrome,<br>display distinct invasive behaviors and genetic interactions with the Wnt and Notch pathways in<br>Drosophila epithelia. Human Molecular Genetics, 2006, 15, 1704-1712. | 1.4 | 35        |
| 95  | Genetic Screening for Familial Gastric Cancer. Hereditary Cancer in Clinical Practice, 2004, 2, 51.                                                                                                                                                                          | 0.6 | 34        |
| 96  | Unraveling genetic predisposition to familial or early onset gastric cancer using germline whole-exome sequencing. European Journal of Human Genetics, 2017, 25, 1246-1252.                                                                                                  | 1.4 | 34        |
| 97  | Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.<br>European Journal of Human Genetics, 2021, 29, 1337-1347.                                                                                                                      | 1.4 | 34        |
| 98  | Adsorbed Fibrinogen Enhances Production of Bone- and Angiogenic-Related Factors by<br>Monocytes/Macrophages. Tissue Engineering - Part A, 2014, 20, 250-263.                                                                                                                 | 1.6 | 33        |
| 99  | Insulin/ICF-I Signaling Pathways Enhances Tumor Cell Invasion through Bisecting GlcNAc N-glycans<br>Modulation. An Interplay with E-Cadherin. PLoS ONE, 2013, 8, e81579.                                                                                                     | 1.1 | 33        |
| 100 | Proteomics Analysis of Gastric Cancer Patients with Diabetes Mellitus. Journal of Clinical Medicine, 2021, 10, 407.                                                                                                                                                          | 1.0 | 32        |
| 101 | Molecular targets and biological modifiers in gastric cancer. Seminars in Diagnostic Pathology, 2008, 25, 274-287.                                                                                                                                                           | 1.0 | 30        |
| 102 | Codon misreading tRNAs promote tumor growth in mice. RNA Biology, 2018, 15, 1-14.                                                                                                                                                                                            | 1.5 | 30        |
| 103 | Genetics of gastric cancer: what do we know about the genetic risks?. Translational<br>Gastroenterology and Hepatology, 2019, 4, 55-55.                                                                                                                                      | 1.5 | 30        |
| 104 | Histological and mutational profile of diffuse gastric cancer: current knowledge and future challenges. Molecular Oncology, 2021, 15, 2841-2867.                                                                                                                             | 2.1 | 27        |
| 105 | Mixed lineage kinase 3 gene mutations in mismatch repair deficient gastrointestinal tumours. Human<br>Molecular Genetics, 2010, 19, 697-706.                                                                                                                                 | 1.4 | 26        |
| 106 | Dies1/VISTA expression loss is a recurrent event in gastric cancer due to epigenetic regulation.<br>Scientific Reports, 2016, 6, 34860.                                                                                                                                      | 1.6 | 26        |
| 107 | The Transcriptomic Landscape of Gastric Cancer: Insights into Epstein-Barr Virus Infected and Microsatellite Unstable Tumors. International Journal of Molecular Sciences, 2018, 19, 2079.                                                                                   | 1.8 | 26        |
| 108 | CD44s Assembles Hyaluronan Coat on Filopodia and Extracellular Vesicles and Induces Tumorigenicity of MKN74 Gastric Carcinoma Cells. Cells, 2019, 8, 276.                                                                                                                    | 1.8 | 26        |

| #   | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. International Journal of Cancer, 2017, 141, 1478-1489.                                                                        | 2.3 | 24        |
| 110 | Effective intracellular delivery of bevacizumab <i>via</i> PEGylated polymeric nanoparticles targeting the CD44v6 receptor in colon cancer cells. Biomaterials Science, 2020, 8, 3720-3729.                                             | 2.6 | 24        |
| 111 | Clinical utility gene card for: Hereditary diffuse gastric cancer (HDGC). European Journal of Human<br>Genetics, 2013, 21, 891-891.                                                                                                     | 1.4 | 22        |
| 112 | Frequent ki-ras mutations in gastric tumors of the MSI phenotype. Gastroenterology, 2003, 125, 1282-1283.                                                                                                                               | 0.6 | 21        |
| 113 | Therapeutic targets associated to E-cadherin dysfunction in gastric cancer. Expert Opinion on Therapeutic Targets, 2013, 17, 1187-1201.                                                                                                 | 1.5 | 21        |
| 114 | Cancer predisposition and germline CTNNA1 variants. European Journal of Medical Genetics, 2021, 64, 104316.                                                                                                                             | 0.7 | 21        |
| 115 | CD44v6 increases gastric cancer malignant phenotype by modulating adipose stromal cell-mediated ECM remodeling. Integrative Biology (United Kingdom), 2018, 10, 145-158.                                                                | 0.6 | 20        |
| 116 | Redefinition of familial intestinal gastric cancer: clinical and genetic perspectives. Journal of Medical Genetics, 2021, 58, 1-11.                                                                                                     | 1.5 | 20        |
| 117 | Molecular cloning and analysis of SSc5D, a new member of the scavenger receptor cysteine-rich superfamily. Molecular Immunology, 2009, 46, 2585-2596.                                                                                   | 1.0 | 19        |
| 118 | Extracellular Vesicles ââ,¬â€œ Powerful Markers of Cancer EVolution. Frontiers in Immunology, 2014, 5,<br>685.                                                                                                                          | 2.2 | 19        |
| 119 | Multigene Panel Testing Increases the Number of Loci Associated with Gastric Cancer Predisposition.<br>Cancers, 2019, 11, 1340.                                                                                                         | 1.7 | 19        |
| 120 | A Fast Alternative to Soft Lithography for the Fabrication of Organâ€onâ€a hip Elastomericâ€Based Devices<br>and Microactuators. Advanced Science, 2021, 8, 2003273.                                                                    | 5.6 | 19        |
| 121 | ICI 182,780 induces P-cadherin overexpression in breast cancer cells through chromatin remodelling<br>at the promoter level: a role for C/EBPA in CDH3 gene activation. Human Molecular Genetics, 2010, 19,<br>2554-2566.               | 1.4 | 18        |
| 122 | The mechanisms underlying MMR deficiency in immunodeficiencyâ€related nonâ€Hodgkin lymphomas are<br>different from those in other sporadic microsatellite instable neoplasms. International Journal of<br>Cancer, 2009, 125, 2360-2366. | 2.3 | 17        |
| 123 | Rescue of wild-type E-cadherin expression from nonsense-mutated cancer cells by a suppressor-tRNA.<br>European Journal of Human Genetics, 2014, 22, 1085-1092.                                                                          | 1.4 | 17        |
| 124 | Lewis enzyme (α1–3/4 fucosyltransferase) polymorphisms do not explain the Lewis phenotype in the gastric mucosa of a Portuguese population. Journal of Human Genetics, 2003, 48, 183-189.                                               | 1.1 | 16        |
| 125 | MBD4 mutations are rare in gastric carcinomas with microsatellite instability. Cancer Genetics and Cytogenetics, 2003, 145, 103-107.                                                                                                    | 1.0 | 16        |
| 126 | <i>KRAS</i> Mutations and Anti–Epidermal Growth Factor Receptor Therapy in Colorectal Cancer<br>With Lymph Node Metastases. Journal of Clinical Oncology, 2009, 27, 158-159.                                                            | 0.8 | 16        |

| #   | ARTICLE                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Transcription initiation arising from E-cadherin/CDH1 intron2: a novel protein isoform that increases gastric cancer cell invasion and angiogenesisâ€. Human Molecular Genetics, 2012, 21, 4253-4269.                 | 1.4 | 16        |
| 128 | Impact of surfactants on the target recognition of Fab-conjugated PLGA nanoparticles. European<br>Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 366-370.                                                  | 2.0 | 16        |
| 129 | Targeting miR-9 in gastric cancer cells using locked nucleic acid oligonucleotides. BMC Molecular<br>Biology, 2018, 19, 6.                                                                                            | 3.0 | 16        |
| 130 | S100P is a molecular determinant of E-cadherin function in gastric cancer. Cell Communication and Signaling, 2019, 17, 155.                                                                                           | 2.7 | 16        |
| 131 | Germline TP53 Testing in Breast Cancers: Why, When and How?. Cancers, 2020, 12, 3762.                                                                                                                                 | 1.7 | 16        |
| 132 | Pathology and Genetics of Familial Gastric Cancer. International Journal of Surgical Pathology, 2010,<br>18, 33-36.                                                                                                   | 0.4 | 15        |
| 133 | Human cells adapt to translational errors by modulating protein synthesis rate and protein turnover.<br>RNA Biology, 2020, 17, 135-149.                                                                               | 1.5 | 15        |
| 134 | A subset of colorectal carcinomas express c-KIT protein independently of BRAF and/or KRAS activation.<br>Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2007, 450,<br>619-626. | 1.4 | 14        |
| 135 | TP53 germline mutations in Portugal and genetic modifiers of age at cancer onset. Familial Cancer, 2009, 8, 383-390.                                                                                                  | 0.9 | 14        |
| 136 | Bioengineering a novel 3D in vitro model of gastric mucosa for stomach permeability studies. Acta<br>Biomaterialia, 2018, 82, 68-78.                                                                                  | 4.1 | 14        |
| 137 | Gene Expression Analyses in Non Muscle Invasive Bladder Cancer Reveals a Role for Alternative Splicing and Tp53 Status. Scientific Reports, 2019, 9, 10362.                                                           | 1.6 | 14        |
| 138 | Expression of CD44v6-Containing Isoforms Influences Cisplatin Response in Gastric Cancer Cells.<br>Cancers, 2020, 12, 858.                                                                                            | 1.7 | 14        |
| 139 | <i>CDX2</i> promoter methylation is not associated with mRNA expression. International Journal of Cancer, 2009, 125, 1739-1742.                                                                                       | 2.3 | 13        |
| 140 | KRAS Signaling Pathway Alterations in Microsatellite Unstable Gastrointestinal Cancers. Advances in<br>Cancer Research, 2010, 109, 123-143.                                                                           | 1.9 | 13        |
| 141 | Recurrent candidiasis and early-onset gastric cancer in a patient with a genetically defined partial MYD88 defect. Familial Cancer, 2016, 15, 289-296.                                                                | 0.9 | 13        |
| 142 | Integrated Analysis of Structural Variation and RNA Expression of FGFR2 and Its Splicing Modulator<br>ESRP1 Highlight the ESRP1amp-FGFR2norm-FGFR2-IIIchigh Axis in Diffuse Gastric Cancer. Cancers, 2020,<br>12, 70. | 1.7 | 13        |
| 143 | Unmasking the role of <i>KRAS</i> and <i>BRAF</i> pathways in MSI colorectal tumors. Expert Review of<br>Gastroenterology and Hepatology, 2009, 3, 5-9.                                                               | 1.4 | 12        |
| 144 | CDH1 somatic alterations in Mexican patients with diffuse and mixed sporadic gastric cancer. BMC Cancer, 2019, 19, 69.                                                                                                | 1.1 | 12        |

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Genetic and Epigenetic Alterations of CDH1 Regulatory Regions in Hereditary and Sporadic Gastric<br>Cancer. Pharmaceuticals, 2021, 14, 457.                                                                 | 1.7 | 12        |
| 146 | Engineering Modular Half-Antibody Conjugated Nanoparticles for Targeting CD44v6-Expressing Cancer Cells. Nanomaterials, 2021, 11, 295.                                                                      | 1.9 | 11        |
| 147 | Serous borderline ovarian tumors in long-term culture: phenotypic and genotypic distinction from invasive ovarian carcinomas. International Journal of Gynecological Cancer, 2008, 18, 1234-1247.           | 1.2 | 10        |
| 148 | New Target Genes in Endometrial Tumors Show a Role for the Estrogen-Receptor Pathway in<br>Microsatellite-Unstable Cancers. Human Mutation, 2014, 35, 1514-1523.                                            | 1.1 | 10        |
| 149 | Optimizing the management of hereditary haemochromatosis: the value of <scp>MRI</scp> R2*<br>quantification to predict and monitor body iron stores. British Journal of Haematology, 2018, 183,<br>491-493. | 1.2 | 10        |
| 150 | Gastric cancer genetic predisposition and clinical presentations: Established heritable causes and potential candidate genes. European Journal of Medical Genetics, 2022, 65, 104401.                       | 0.7 | 10        |
| 151 | Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2.<br>Scientific Reports, 2015, 5, 10079.                                                                     | 1.6 | 9         |
| 152 | The Dysfunctional Immune System in Common Variable Immunodeficiency Increases the Susceptibility to Gastric Cancer. Cells, 2020, 9, 1498.                                                                   | 1.8 | 9         |
| 153 | A mosaic PIK3CA variant in a young adult with diffuse gastric cancer: case report. European Journal of<br>Human Genetics, 2021, 29, 1354-1358.                                                              | 1.4 | 9         |
| 154 | Gastric Cancer Extracellular Vesicles Tune the Migration and Invasion of Epithelial and Mesenchymal<br>Cells in a Histotype-Dependent Manner. International Journal of Molecular Sciences, 2019, 20, 2608.  | 1.8 | 8         |
| 155 | The effects of L-carnitine supplementation in athletic performance. Science and Sports, 2019, 34, 63-72.                                                                                                    | 0.2 | 8         |
| 156 | Whole Slide Image Registration for the Study of Tumor Heterogeneity. Lecture Notes in Computer Science, 2018, , 95-102.                                                                                     | 1.0 | 7         |
| 157 | Skipping Exon-v6 from CD44v6-Containing Isoforms Influences Chemotherapy Response and Self-Renewal Capacity of Gastric Cancer Cells. Cancers, 2020, 12, 2378.                                               | 1.7 | 7         |
| 158 | tRNAs as a Driving Force of Genome Evolution in Yeast. Frontiers in Microbiology, 2021, 12, 634004.                                                                                                         | 1.5 | 7         |
| 159 | The CDH1 c.1901C>T Variant: A Founder Variant in the Portuguese Population with Severe Impact in mRNA Splicing. Cancers, 2021, 13, 4464.                                                                    | 1.7 | 7         |
| 160 | Different Types of Epithelial Cadherin Alterations Play Different Roles in Human Carcinogenesis.<br>Advances in Anatomic Pathology, 2002, 9, 329-337.                                                       | 2.4 | 6         |
| 161 | Characterization of the intronic portion of cadherin superfamily members, common cancer orchestrators. European Journal of Human Genetics, 2012, 20, 878-883.                                               | 1.4 | 6         |
| 162 | Familial gastric carcinoma. Diagnostic Histopathology, 2014, 20, 239-246.                                                                                                                                   | 0.2 | 6         |

| #   | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | KRAS mutations in microsatellite instable gastric tumours: impact of targeted treatment and<br>intratumoural heterogeneity. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur<br>Klinische Medizin, 2015, 467, 383-392.                             | 1.4 | 6         |
| 164 | Comparison of Eastâ€Asia and Westâ€Europe cohorts explains disparities in survival outcomes and<br>highlights predictive biomarkers of early gastric cancer aggressiveness. International Journal of<br>Cancer, 2022, 150, 868-880.                                  | 2.3 | 6         |
| 165 | Upregulation of tRNA-Ser-AGA-2-1 Promotes Malignant Behavior in Normal Bronchial Cells. Frontiers<br>in Molecular Biosciences, 2022, 9, 809985.                                                                                                                      | 1.6 | 6         |
| 166 | Rotary orbital suspension culture of embryonic stem cell-derived neural stem/progenitor cells:<br>impact of hydrodynamic culture on aggregate yield, morphology and cell phenotype. Journal of Tissue<br>Engineering and Regenerative Medicine, 2017, 11, 2227-2240. | 1.3 | 5         |
| 167 | Towards Automatic Protein Co-Expression Quantification in Immunohistochemical TMA Slides. IEEE<br>Journal of Biomedical and Health Informatics, 2021, 25, 393-402.                                                                                                   | 3.9 | 5         |
| 168 | The role of non-standard translation in <i>Candida albicans</i> pathogenesis. FEMS Yeast Research, 2021, 21, .                                                                                                                                                       | 1.1 | 5         |
| 169 | Immunophenotype of Gastric Tumors Unveils a Pleiotropic Role of Regulatory T Cells in Tumor<br>Development. Cancers, 2021, 13, 421.                                                                                                                                  | 1.7 | 5         |
| 170 | Reply to Kratz et al European Journal of Human Genetics, 2020, 28, 1483-1485.                                                                                                                                                                                        | 1.4 | 4         |
| 171 | CD44v6 High Membranous Expression Is a Predictive Marker of Therapy Response in Gastric Cancer Patients. Biomedicines, 2021, 9, 1249.                                                                                                                                | 1.4 | 3         |
| 172 | Epithelial-Mesenchymal Plasticity Induced by Discontinuous Exposure to TGFβ1 Promotes Tumour<br>Growth. Biology, 2022, 11, 1046.                                                                                                                                     | 1.3 | 3         |
| 173 | Hereditary Cancer Risk Assessment: Challenges for the Next-Gen Sequencing Era. Frontiers in Oncology, 2015, 5, 62.                                                                                                                                                   | 1.3 | 2         |
| 174 | Risk-reducing total gastrectomy in asymptomatic CDH1 carriers. European Surgery - Acta Chirurgica<br>Austriaca, 2020, 52, 171-178.                                                                                                                                   | 0.3 | 2         |
| 175 | E-Cadherin Germline Mutations. , 2013, , 35-49.                                                                                                                                                                                                                      |     | 2         |
| 176 | CDH1 structural alterations as novel prognostic biomarker in gastric cancer patients Journal of Clinical Oncology, 2011, 29, 42-42.                                                                                                                                  | 0.8 | 2         |
| 177 | Solving the genetic aetiology of hereditary gastrointestinal tumour syndromes– a collaborative multicentre endeavour within the project Solve-RD. European Journal of Medical Genetics, 2022, 65, 104475.                                                            | 0.7 | 2         |
| 178 | Updated perspective and directions on hereditary diffuse gastric cancer. , 2021, , 217-258.                                                                                                                                                                          |     | 1         |
| 179 | Level of literacy and clinical outcomes in patients with Chagas disease: SaMi-Trop project. European<br>Journal of Public Health, 2020, 30, .                                                                                                                        | 0.1 | 1         |
| 180 | Hereditary Diffuse Gastric Cancer and Other Gastric Cancers Associated with Hereditary Predisposition Syndromes. Molecular Pathology Library, 2013, , 83-107.                                                                                                        | 0.1 | 0         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Inherited CDH1 pathogenic variant: is there a place for surveillance of esophageal gastric inlet patch?.<br>Therapeutic Advances in Gastroenterology, 2020, 13, 175628482091639. | 1.4 | 0         |
| 182 | PIK3CA Gene Alterations in Human Cancers. , 2009, , 1-20.                                                                                                                        |     | 0         |
| 183 | Non-CDH1-Associated Familial Gastric Cancer and Epigenetics Factors. , 2013, , 111-125.                                                                                          |     | 0         |
| 184 | Alternative Mechanisms to Germline CDH1 Mutations in Hereditary Diffuse Gastric Cancer. , 2013, , 87-96.                                                                         |     | 0         |