
Ioannis S Chronakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid and Interface Science, 2003, 8, 64-75.	3.4	1,117
2	Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—A review. Journal of Materials Processing Technology, 2005, 167, 283-293.	3.1	671
3	Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids and Surfaces B: Biointerfaces, 2013, 103, 182-188.	2.5	257
4	Electrospinning of food proteins and polysaccharides. Food Hydrocolloids, 2017, 68, 53-68.	5.6	237
5	Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. International Journal of Pharmaceutics, 2016, 510, 48-56.	2.6	158
6	Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annual Review of Food Science and Technology, 2018, 9, 525-549.	5.1	105
7	Viscoelastic properties for kappa- and iota-carrageenan in aqueous Nal from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 2000, 28, 1-14.	3.6	77
8	Innovative Methods and Applications in Mucoadhesion Research. Macromolecular Bioscience, 2017, 17, 1600534.	2.1	77
9	Rheology of kappa-carrageenan in mixtures of sodium and cesium iodide: two types of gels. Carbohydrate Polymers, 1996, 31, 215-225.	5.1	76
10	Development of electrosprayed mucoadhesive chitosan microparticles. Carbohydrate Polymers, 2018, 190, 240-247.	5.1	73
11	In vitro permeability enhancement of curcumin across Caco-2 cells monolayers using electrospun xanthan-chitosan nanofibers. Carbohydrate Polymers, 2019, 206, 38-47.	5.1	71
12	Electrospinning and electrospraying technologies for food applications. Advances in Food and Nutrition Research, 2019, 88, 167-234.	1.5	68
13	Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Materials Letters, 2018, 228, 322-326.	1.3	63
14	Interactions of salivary mucins and saliva with food proteins: a review. Critical Reviews in Food Science and Nutrition, 2020, 60, 64-83.	5.4	41
15	Electrospinning of Xanthan Polysaccharide. Macromolecular Materials and Engineering, 2017, 302, 1700067.	1.7	40
16	Electrostatic self-assembly of polysaccharides into nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 182-188.	2.3	39
17	Morphological, Mechanical and Mucoadhesive Properties of Electrospun Chitosan/Phospholipid Hybrid Nanofibers. International Journal of Molecular Sciences, 2018, 19, 2266.	1.8	39
18	Zinc oxide's hierarchical nanostructure and its photocatalytic properties. Applied Surface Science, 2012, 258, 3695-3702.	3.1	36

IOANNIS S CHRONAKIS

#	Article	IF	CITATIONS
19	Bioactive electrospun fish sarcoplasmic proteins as a drug delivery system. Colloids and Surfaces B: Biointerfaces, 2014, 122, 158-165.	2.5	36
20	Electrohydrodynamic encapsulation of probiotics: A review. Food Hydrocolloids, 2021, 117, 106688.	5.6	36
21	Swelling of mucoadhesive electrospun chitosan/polyethylene oxide nanofibers facilitates adhesion to the sublingual mucosa. Carbohydrate Polymers, 2020, 242, 116428.	5.1	34
22	Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein. International Journal of Pharmaceutics, 2015, 495, 58-66.	2.6	33
23	Electrospun NiO, ZnO and composite NiO–ZnO nanofibers/photocatalytic degradation of dairy effluent. Ceramics International, 2015, 41, 12229-12236.	2.3	31
24	Acids â€~generally recognized as safe' affect morphology and biocompatibility of electrospun chitosan/polyethylene oxide nanofibers. Carbohydrate Polymers, 2019, 215, 253-262.	5.1	29
25	Waterborne Electrospinning of α-Lactalbumin Generates Tunable and Biocompatible Nanofibers for Drug Delivery. ACS Applied Nano Materials, 2020, 3, 1910-1921.	2.4	29
26	Phospholipid electrospun nanofibers: effect of solvents and co-axial processing on morphology and fiber diameter. RSC Advances, 2015, 5, 53644-53652.	1.7	28
27	Co3O4–ZnO hierarchical nanostructures by electrospinning and hydrothermal methods. Applied Surface Science, 2011, 257, 7975-7981.	3.1	27
28	TiO2 nanotube array modified with polypyrrole for efficient photoelectrocatalytic decolorization of methylene blue. Journal of Alloys and Compounds, 2020, 820, 153128.	2.8	27
29	Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices. Molecules, 2017, 22, 1708.	1.7	26
30	Photocatalytic degradation of dairy effluent using AgTiO2 nanostructures/polyurethane nanofiber membrane. Ceramics International, 2015, 41, 9615-9621.	2.3	24
31	Carbon Nanotubes—Potent Carriers for Targeted Drug Delivery in Rheumatoid Arthritis. Pharmaceutics, 2021, 13, 453.	2.0	23
32	Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties. Molecular Pharmaceutics, 2016, 13, 748-755.	2.3	22
33	Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin. Food Hydrocolloids, 2015, 50, 203-210.	5.6	21
34	Investigation of the interaction between mucins and \hat{l}^2 -lactoglobulin under tribological stress. Food Hydrocolloids, 2016, 54, 57-65.	5.6	21
35	Enhanced Transepithelial Permeation of Gallic Acid and (â^')-Epigallocatechin Gallate across Human Intestinal Caco-2 Cells Using Electrospun Xanthan Nanofibers. Pharmaceutics, 2019, 11, 155.	2.0	20
36	Electrosprayed Ethyl Cellulose Core-Shell Microcapsules for the Encapsulation of Probiotics. Pharmaceutics, 2022, 14, 7.	2.0	18

IOANNIS S CHRONAKIS

#	Article	IF	CITATIONS
37	Hybrid matrices of TiO2 and TiO2–Ag nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent. Journal of Industrial and Engineering Chemistry, 2016, 33, 142-149.	2.9	15
38	Interfacial shear rheology of β-lactoglobulin—Bovine submaxillary mucin layers adsorbed at air/water interface. International Journal of Biological Macromolecules, 2017, 102, 857-867.	3.6	14
39	Co-assembly of chitosan and phospholipids into hybrid hydrogels. Pure and Applied Chemistry, 2016, 88, 905-916.	0.9	13
40	Self-powered humidity sensor based on polypyrrole modified melamine aerogel. Materials Letters, 2020, 277, 128281.	1.3	13
41	Nanomechanics of electrospun phospholipid fiber. Applied Physics Letters, 2015, 106, 223108.	1.5	12
42	Electrospun α-Lactalbumin Nanofibers for Site-Specific and Fast-Onset Delivery of Nicotine in the Oral Cavity: An <i>In Vitro</i> , <i>Ex Vivo</i> , and Tissue Spatial Distribution Study. Molecular Pharmaceutics, 2020, 17, 4189-4200.	2.3	10
43	Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. , 2018, , 447-479.		9
44	Mucoadhesive Electrospun Nanofiber-Based Hybrid System with Controlled and Unidirectional Release of Desmopressin. International Journal of Molecular Sciences, 2022, 23, 1458.	1.8	9
45	Citrullinated Peptide Epitope Targets Therapeutic Nanoparticles to Human Neutrophils. Bioconjugate Chemistry, 2019, 30, 2584-2593.	1.8	8
46	Electrohydrodynamic Processing of Potato Protein into Particles and Fibers. Molecules, 2020, 25, 5968.	1.7	8
47	Hybrid matrices of ZnO nanofibers with silicone for high water flux photocatalytic degradation of dairy effluent. Materials Chemistry and Physics, 2016, 181, 495-500.	2.0	7
48	Design and characterization of self-assembled fish sarcoplasmic protein–alginate nanocomplexes. International Journal of Biological Macromolecules, 2015, 76, 146-152.	3.6	6
49	Composite nanofibers/water photosplitting and photocatalytic degradation of dairy effluent. Separation and Purification Technology, 2018, 192, 160-165.	3.9	6
50	Cyclic Citrullinated Peptide Aptamer Treatment Attenuates Collagen-Induced Arthritis. Biomacromolecules, 2022, 23, 2126-2137.	2.6	6
51	Interactions of Î ² -Lactoglobulin with Bovine Submaxillary Mucin vs. Porcine Gastric Mucin: The Role of Hydrophobic and Hydrophilic Residues as Studied by Fluorescence Spectroscopy. Molecules, 2021, 26, 6799.	1.7	4