Ge Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599803/publications.pdf

Version: 2024-02-01

331670 330143 1,769 39 21 37 citations h-index g-index papers 40 40 40 2519 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ultrasensitive detection of small biomolecules using aptamer-based molecular recognition and nanoparticle counting. Biosensors and Bioelectronics, 2022, 203, 114023.	10.1	9
2	Iris stromal cell nuclei deform to more elongated shapes during pharmacologically-induced miosis and mydriasis. Experimental Eye Research, 2021, 202, 108373.	2.6	2
3	In vitro comparison of harvesting site effects on cardiac extracellular matrix hydrogels. Journal of Biomedical Materials Research - Part A, 2021, 109, 1922-1930.	4.0	3
4	Biomechanical properties of acellular scar ECM during the acute to chronic stages of myocardial infarction. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104342.	3.1	10
5	Mapping Surface Charge Distribution of Single-Cell via Charged Nanoparticle. Cells, 2021, 10, 1519.	4.1	13
6	Multiple Physical Bonds to Realize Highly Tough and Self-Adhesive Double-Network Hydrogels. ACS Applied Polymer Materials, 2020, 2, 1031-1042.	4.4	39
7	Preseeding of Mesenchymal Stem Cells Increases Integration of an iPSC-Derived CM Sheet into a Cardiac Matrix. ACS Biomaterials Science and Engineering, 2020, 6, 6808-6818.	5.2	3
8	Exogenous Signaling Molecules Released from Aptamer-Functionalized Hydrogels Promote the Survival of Mesenchymal Stem Cell Spheroids. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24599-24610.	8.0	15
9	A Microfluidic Sensor for Continuous, in Situ Surface Charge Measurement of Single Cells. ACS Sensors, 2020, 5, 527-534.	7.8	11
10	In Vivo Assessment of Decellularized Porcine Myocardial Slice as an Acellular Cardiac Patch. ACS Applied Materials & Decellularized, 2019, 11, 23893-23900.	8.0	35
11	Cardiac tissue-derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. International Journal of Energy Production and Management, 2019, 6, 185-199.	3.7	75
12	Dual Aptamer-Functionalized in Situ Injectable Fibrin Hydrogel for Promotion of Angiogenesis via Codelivery of Vascular Endothelial Growth Factor and Platelet-Derived Growth Factor-BB. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18123-18132.	8.0	54
13	A microfluidic device for noninvasive cell electrical stimulation and extracellular field potential analysis. Biomedical Microdevices, 2019, 21, 20.	2.8	9
14	Enabling single cell electrical stimulation and response recording via a microfluidic platform. Biomicrofluidics, 2019, 13, 064126.	2.4	4
15	Development and Comparison of Two Immuno-disaggregation Based Bioassays for Cell Secretome Analysis. Theranostics, 2018, 8, 328-340.	10.0	4
16	A Thin Layer of Decellularized Porcine Myocardium for Cell Delivery. Scientific Reports, 2018, 8, 16206.	3.3	25
17	A microfluidic competitive immuno-aggregation assay for high sensitivity cell secretome detection. Organogenesis, 2018, 14, 67-81.	1.2	4
18	Prevascularization of Decellularized Porcine Myocardial Slice for Cardiac Tissue Engineering. ACS Applied Materials & Decellularized Porcine Myocardial Slice for Cardiac Tissue Engineering. ACS	8.0	24

#	Article	IF	Citations
19	A microfluidic sensor for single cell detection in a continuous flow. , 2017, , .		1
20	In situ single cell detection via microfluidic magnetic bead assay. PLoS ONE, 2017, 12, e0172697.	2.5	15
21	Current challenges in dedifferentiated fat cells research. Organogenesis, 2016, 12, 119-127.	1.2	11
22	Microfluidic Magnetic Bead Assay for Cell Detection. Analytical Chemistry, 2016, 88, 711-717.	6.5	30
23	Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs. Critical Reviews in Biomedical Engineering, 2015, 43, 455-471.	0.9	6
24	Tailoring Material Properties of Cardiac Matrix Hydrogels To Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 11053-11061.	8.0	60
25	Stacked stem cell sheets enhance cell-matrix interactions. Organogenesis, 2014, 10, 170-176.	1.2	16
26	Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix. Acta Biomaterialia, 2014, 10, 3449-3462.	8.3	45
27	Antifouling and biodegradable poly(N-hydroxyethyl acrylamide) (polyHEAA)-based nanogels. RSC Advances, 2013, 3, 19991.	3.6	37
28	Responsive systems for cell sheet detachment. Organogenesis, 2013, 9, 93-100.	1.2	78
29	Biomimicry in biomedical research. Organogenesis, 2012, 8, 101-102.	1.2	40
30	Rapid cell sheet detachment using spin-coated pNIPAAm films retained on surfaces by an aminopropyltriethoxysilane network. Acta Biomaterialia, 2012, 8, 2559-2567.	8.3	53
31	Synthesis and characterization of pH-sensitive poly(N-2-hydroxyethyl acrylamide)–acrylic acid (poly(HEAA/AA)) nanogels with antifouling protection for controlled release. Soft Matter, 2012, 8, 7848.	2.7	81
32	Tissue Engineering in Drug Delivery. , 2012, , 533-568.		1
33	Multimodal release of transforming growth factor- \hat{l}^21 and the BB isoform of platelet derived growth factor from PEGylated fibrin gels. Journal of Controlled Release, 2010, 147, 180-186.	9.9	63
34	Vascular differentiation of bone marrow stem cells is directed by a tunable three-dimensional matrix. Acta Biomaterialia, 2010, 6, 3395-3403.	8.3	78
35	Enhancing Efficacy of Stem Cell Transplantation to the Heart with a PEGylated Fibrin Biomatrix. Tissue Engineering - Part A, 2008, 14, 1025-1036.	3.1	128
36	Bioenergetic and Functional Consequences of Bone Marrow–Derived Multipotent Progenitor Cell Transplantation in Hearts With Postinfarction Left Ventricular Remodeling. Circulation, 2007, 115, 1866-1875.	1.6	248

#	Article	IF	CITATIONS
37	Controlled Release of Stromal Cell–Derived Factor-1alphaln SituIncreases C-kit+Cell Homing to the Infarcted Heart. Tissue Engineering, 2007, 13, 2063-2071.	4.6	187
38	Matrices and scaffolds for drug delivery in vascular tissue engineering. Advanced Drug Delivery Reviews, 2007, 59, 360-373.	13.7	77
39	A PEGylated Fibrin Patch for Mesenchymal Stem Cell Delivery. Tissue Engineering, 2006, 12, 9-19.	4.6	175