
Marcello Monteleone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2017, 173, 304-313.	7.9	148
2	The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2018, 6, 10507-10514.	10.3	91
3	A reliable and simple method for the assay of neuroendocrine tumor markers in human urine by solid-phase microextraction–gas chromatography-triple quadrupole mass spectrometry. Analytica Chimica Acta, 2013, 759, 66-73.	5.4	68
4	The origin of size-selective gas transport through polymers of intrinsic microporosity. Journal of Materials Chemistry A, 2019, 7, 20121-20126.	10.3	63
5	Temperature Dependence of Gas Permeation and Diffusion in Triptycene-Based Ultrapermeable Polymers of Intrinsic Microporosity. ACS Applied Materials & Interfaces, 2018, 10, 36475-36482.	8.0	58
6	A solid-phase microextraction-gas chromatographic approach combined with triple quadrupole mass spectrometry for the assay of carbamate pesticides in water samples. Journal of Chromatography A, 2012, 1257, 149-157.	3.7	56
7	Sarcosine as a marker in prostate cancer progression: a rapid and simple method for its quantification in human urine by solid-phase microextraction–gas chromatography–triple quadrupole mass spectrometry. Analytical and Bioanalytical Chemistry, 2011, 400, 2903-2912.	3.7	55
8	Mixed matrix membranes based on MIL-101 metal–organic frameworks in polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2019, 212, 545-554.	7.9	53
9	Temperature and pressure dependence of gas permeation in amine-modified PIM-1. Journal of Membrane Science, 2018, 555, 483-496.	8.2	45
10	A rapid and sensitive assay of perfluorocarboxylic acids in aqueous matrices by headspace solid phase microextraction–gas chromatography–triple quadrupole mass spectrometry. Journal of Chromatography A, 2012, 1251, 160-168.	3.7	44
11	Bioinspired Metalâ€Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic Removal of Mercury from Water. Advanced Functional Materials, 2021, 31, 2008499.	14.9	43
12	Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane Science, 2020, 594, 117460.	8.2	39
13	A Novel Time Lag Method for the Analysis of Mixed Gas Diffusion in Polymeric Membranes by On-Line Mass Spectrometry: Pressure Dependence of Transport Parameters. Membranes, 2018, 8, 73.	3.0	35
14	Highly Permeable Matrimid®/PIM-EA(H2)-TB Blend Membrane for Gas Separation. Polymers, 2019, 11, 46.	4.5	31
15	Ultrapermeable Polymers of Intrinsic Microporosity Containing Spirocyclic Units with Fused Triptycenes. Advanced Functional Materials, 2021, 31, 2104474.	14.9	29
16	Correlating Gas Permeability and Young's Modulus during the Physical Aging of Polymers of Intrinsic Microporosity Using Atomic Force Microscopy. Industrial & Engineering Chemistry Research, 2020, 59, 5381-5391.	3.7	25
17	Upgrading of raw biogas using membranes based on the ultrapermeable polymer of intrinsic microporosity PIM-TMN-Trip. Journal of Membrane Science, 2021, 618, 118694.	8.2	23
18	Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chemistry of Materials, 2019, 31, 5856-5866.	6.7	18

MARCELLO MONTELEONE

#	ARTICLE	IF	CITATIONS
19	Force spectroscopy determination of Young's modulus in mixed matrix membranes. Polymer, 2018, 156, 22-29.	3.8	16
20	Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 2020, 8, 28.	2.0	14
21	Glassy PEEK-WC vs. Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed Matrix Membranes. Applied Sciences (Switzerland), 2020, 10, 1310.	2.5	12
22	Effect of the CO2-philic ionic liquid [BMIM][Tf2N] on the single and mixed gas transport in PolyActiveâ,,¢ membranes. Separation and Purification Technology, 2021, 256, 117813.	7.9	11
23	Advanced methods for analysis of mixed gas diffusion in polymeric membranes. Journal of Membrane Science, 2022, 648, 120356.	8.2	10
24	Tailoring the Thermal and Mechanical Properties of PolyActiveTM Poly(Ether-Ester) Multiblock Copolymers Via Blending with CO2-Phylic Ionic Liquid. Polymers, 2020, 12, 890.	4.5	9
25	PEEK–WC-Based Mixed Matrix Membranes Containing Polyimine Cages for Gas Separation. Molecules, 2021, 26, 5557.	3.8	8
26	Optical Analysis of the Internal Void Structure in Polymer Membranes for Gas Separation. Membranes, 2020, 10, 328.	3.0	5
27	Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate/Pebax® 1657 Composite Membranes and Their Gas Separation Performance. Membranes, 2020, 10, 224.	3.0	4