List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The worldwide leaf economics spectrum. Nature, 2004, 428, 821-827.	13.7	6,489
2	New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61, 167.	0.3	2,818
3	Plant Ecological Strategies: Some Leading Dimensions of Variation Between Species. Annual Review of Ecology, Evolution, and Systematics, 2002, 33, 125-159.	6.7	2,309
4	Causes and consequences of variation in leaf mass per area (LMA): a metaâ€analysis. New Phytologist, 2009, 182, 565-588.	3.5	2,056
5	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	13.7	2,022
6	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
7	Global convergence in the vulnerability of forests to drought. Nature, 2012, 491, 752-755.	13.7	1,944
8	Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 2008, 11, 1065-1071.	3.0	1,913
9	Bivariate line-fitting methods for allometry. Biological Reviews, 2006, 81, 259.	4.7	1,870
10	Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166, 485-496.	3.5	1,704
11	Three keys to the radiation of angiosperms into freezing environments. Nature, 2014, 506, 89-92.	13.7	1,284
12	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
13	Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 2006, 21, 261-268.	4.2	808
14	Functional traits and the growth–mortality tradeâ€off in tropical trees. Ecology, 2010, 91, 3664-3674.	1.5	788
15	A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 2009, 18, 137-149.	2.7	767
16	Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 2009, 183, 980-992.	3.5	744
17	Modulation of leaf economic traits and trait relationships by climate. Clobal Ecology and Biogeography, 2005, 14, 411-421.	2.7	669
18	Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 2001, 15, 423-434.	1.7	648

#	Article	IF	CITATIONS
19	The evolutionary ecology of seed size , 2000, , 31-57.		638
20	Global climatic drivers of leaf size. Science, 2017, 357, 917-921.	6.0	580
21	ARE FUNCTIONAL TRAITS GOOD PREDICTORS OF DEMOGRAPHIC RATES? EVIDENCE FROM FIVE NEOTROPICAL FORESTS. Ecology, 2008, 89, 1908-1920.	1.5	572
22	Weak tradeoff between xylem safety and xylemâ€specific hydraulic efficiency across the world's woody plant species. New Phytologist, 2016, 209, 123-136.	3.5	466
23	Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 2011, 190, 724-739.	3.5	445
24	FUNDAMENTAL TRADE-OFFS GENERATING THE WORLDWIDE LEAF ECONOMICS SPECTRUM. Ecology, 2006, 87, 535-541.	1.5	422
25	Global patterns of leaf mechanical properties. Ecology Letters, 2011, 14, 301-312.	3.0	418
26	Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 2017, 214, 1447-1463.	3.5	412
27	Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology, 2003, 17, 10-19.	1.7	378
28	Specific Leaf Area and Dry Matter Content Estimate Thickness in Laminar Leaves. Annals of Botany, 2005, 96, 1129-1136.	1.4	374
29	Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters, 2008, 11, 793-801.	3.0	373
30	Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2016, 64, 715.	0.3	361
31	Clobal variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 2015, 206, 614-636.	3.5	350
32	Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology, 2009, 36, 199.	1.1	348
33	Convergence towards higher leaf mass per area in dry and nutrientâ€poor habitats has different consequences for leaf life span. Journal of Ecology, 2002, 90, 534-543.	1.9	334
34	Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecology Letters, 2014, 17, 82-91.	3.0	332
35	Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytologist, 2002, 155, 403-416.	3.5	328
36	Which is a better predictor of plant traits: temperature or precipitation?. Journal of Vegetation Science, 2014, 25, 1167-1180.	1.1	323

#	Article	IF	CITATIONS
37	Relationships Among Ecologically Important Dimensions of Plant Trait Variation in Seven Neotropical Forests. Annals of Botany, 2007, 99, 1003-1015.	1.4	317
38	Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 2013, 117, 45-59.	1.6	305
39	Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia, 2009, 160, 207-212.	0.9	274
40	Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. Journal of Ecology, 1999, 87, 85-97.	1.9	273
41	Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecology and Biogeography, 2015, 24, 706-717.	2.7	254
42	Least ost Input Mixtures of Water and Nitrogen for Photosynthesis. American Naturalist, 2003, 161, 98-111.	1.0	252
43	Towards a universal model for carbon dioxide uptake by plants. Nature Plants, 2017, 3, 734-741.	4.7	237
44	The biogeography and filtering of woody plant functional diversity in North and South America. Global Ecology and Biogeography, 2012, 21, 798-808.	2.7	235
45	Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 2001, 15, 351-359.	1.7	230
46	PREDICTING LEAF PHYSIOLOGY FROM SIMPLE PLANT AND CLIMATE ATTRIBUTES: A GLOBAL GLOPNET ANALYSIS. Ecological Applications, 2007, 17, 1982-1988.	1.8	207
47	Functional differences between native and alien species: a globalâ€scale comparison. Functional Ecology, 2010, 24, 1353-1361.	1.7	203
48	"Diminishing returns" in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8891-8896.	3.3	177
49	Interrelations among pressure-volume curve traits across species and water availability gradients. Physiologia Plantarum, 2006, 127, 423-433.	2.6	168
50	The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 2003, 135, 621-628.	0.9	166
51	Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 877-883.	1.2	163
52	A test of the â€~oneâ€point method' for estimating maximum carboxylation capacity from fieldâ€measured, lightâ€saturated photosynthesis. New Phytologist, 2016, 210, 1130-1144.	3.5	159
53	Global photosynthetic capacity is optimized to the environment. Ecology Letters, 2019, 22, 506-517.	3.0	153
54	Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: evidence from comparisons across 20 sites. New Phytologist, 2006, 169, 309-319.	3.5	150

#	Article	IF	CITATIONS
55	Are species shade and drought tolerance reflected in leafâ€level structural and functional differentiation in Northern Hemisphere temperate woody flora?. New Phytologist, 2009, 184, 257-274.	3.5	146
56	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	3.4	144
57	Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. Journal of Experimental Botany, 2012, 63, 5105-5119.	2.4	143
58	Volatile isoprenoid emissions from plastid to planet. New Phytologist, 2013, 197, 49-57.	3.5	142
59	Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Global Ecology and Biogeography, 2014, 23, 1046-1057.	2.7	136
60	<scp>BHPMF</scp> – a hierarchical <scp>B</scp> ayesian approach to gapâ€filling and trait prediction for macroecology and functional biogeography. Global Ecology and Biogeography, 2015, 24, 1510-1521.	2.7	132
61	On the link between functional traits and growth rate: metaâ€analysis shows effects change with plant size, as predicted. Journal of Ecology, 2016, 104, 1488-1503.	1.9	132
62	Short Communication: Leaf trait relationships in Australian plant species. Functional Plant Biology, 2004, 31, 551.	1.1	123
63	Impacts of trait variation through observed trait–climate relationships on performance of an Earth system model: a conceptual analysis. Biogeosciences, 2013, 10, 5497-5515.	1.3	122
64	Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. Journal of Experimental Botany, 2009, 60, 2433-2449.	2.4	121
65	Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB PLANTS, 2013, 5, .	1.2	121
66	Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review, 2018, 5, 728-739.	4.6	121
67	Mechanisms underlying global temperatureâ€related patterns in leaf longevity. Global Ecology and Biogeography, 2013, 22, 982-993.	2.7	121
68	Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 2017, 105, 298-309.	1.9	114
69	Components of leafâ€ŧrait variation along environmental gradients. New Phytologist, 2020, 228, 82-94.	3.5	111
70	Functional distinctiveness of major plant lineages. Journal of Ecology, 2014, 102, 345-356.	1.9	108
71	Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiologia Plantarum, 2006, 127, 445-456.	2.6	107
72	Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology, 2007, 33, 574-589.	1.3	107

#	Article	IF	CITATIONS
73	Cross-species relationships between seedling relative growth rate, nitrogen productivity and root vs leaf function in 28 Australian woody species. Functional Ecology, 2000, 14, 97-107.	1.7	105
74	Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. New Phytologist, 2003, 160, 329-336.	3.5	101
75	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	13.7	99
76	Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Functional Ecology, 2005, 19, 602-615.	1.7	95
77	Organizing principles for vegetation dynamics. Nature Plants, 2020, 6, 444-453.	4.7	95
78	Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Functional Ecology, 2015, 29, 1486-1497.	1.7	91
79	Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance. Oecologia, 2001, 127, 21-29.	0.9	89
80	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	3.4	89
81	Climate and soils together regulate photosynthetic carbon isotope discrimination within C ₃ plants worldwide. Clobal Ecology and Biogeography, 2018, 27, 1056-1067.	2.7	85
82	Connecting the Green and Brown Worlds. Advances in Ecological Research, 2013, 49, 69-175.	1.4	84
83	Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?. New Phytologist, 2009, 183, 153-166.	3.5	82
84	Understanding ecological variation across species: areaâ€based vs massâ€based expression of leaf traits. New Phytologist, 2013, 199, 322-323.	3.5	77
85	Leaf economics and plant hydraulics drive leaf : wood area ratios. New Phytologist, 2019, 224, 1544-1556.	3.5	77
86	Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences, 2017, 14, 481-495.	1.3	75
87	Gradients of light availability and leaf traits with leaf age and canopy position in 28 Australian shrubs and trees. Functional Plant Biology, 2006, 33, 407.	1.1	74
88	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	2.4	73
89	Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytologist, 2017, 213, 976-982.	3.5	71
90	Ecoâ€evolutionary optimality as a means to improve vegetation and landâ€surface models. New Phytologist, 2021, 231, 2125-2141.	3.5	71

IAN J WRIGHT

#	Article	IF	CITATIONS
91	Hydraulic failure and tree size linked with canopy dieâ€back in eucalypt forest during extreme drought. New Phytologist, 2021, 230, 1354-1365.	3.5	70
92	Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biology, 2020, 26, 2573-2583.	4.2	64
93	A global analysis of water and nitrogen relationships between mistletoes and their hosts: broadâ€scale tests of old and enduring hypotheses. Functional Ecology, 2015, 29, 1114-1124.	1.7	62
94	Functional biogeography of angiosperms: life at the extremes. New Phytologist, 2018, 218, 1697-1709.	3.5	61
95	Quantifying leafâ€ŧrait covariation and its controls across climates and biomes. New Phytologist, 2019, 221, 155-168.	3.5	60
96	A global traitâ€based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications, 2017, 27, 1421-1434.	1.8	59
97	Towards a New Generation of Trait-Flexible Vegetation Models. Trends in Ecology and Evolution, 2020, 35, 191-205.	4.2	59
98	Nutrientâ€rich plants emit a less intense blend of volatile isoprenoids. New Phytologist, 2018, 220, 773-784.	3.5	56
99	Rising CO ₂ drives divergence in water use efficiency of evergreen and deciduous plants. Science Advances, 2019, 5, eaax7906.	4.7	56
100	Broad Anatomical Variation within a Narrow Wood Density Range—A Study of Twig Wood across 69 Australian Angiosperms. PLoS ONE, 2015, 10, e0124892.	1.1	56
101	A metaâ€analysis of responses of C ₃ plants to atmospheric CO ₂ : dose–response curves for 85 traits ranging from the molecular to the wholeâ€plant level. New Phytologist, 2022, 233, 1560-1596.	3.5	55
102	Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. Geophysical Research Letters, 2012, 39, .	1.5	54
103	Relationships between soil nutrient status and nutrient-related leaf traits in Brazilian cerrado and seasonal forest communities. Plant and Soil, 2016, 404, 13-33.	1.8	54
104	An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution, 2014, 4, 2799-2811.	0.8	53
105	Disentangling Coordination among Functional Traits Using an Individual-Centred Model: Impact on Plant Performance at Intra- and Inter-Specific Levels. PLoS ONE, 2013, 8, e77372.	1.1	53
106	Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant and Soil, 2021, 461, 43-61.	1.8	52
107	A continentalâ€scale assessment of variability in leaf traits: Within species, across sites and between seasons. Functional Ecology, 2018, 32, 1492-1506.	1.7	48
108	Are leaf functional traits â€~invariant' with plant size and what is â€~invariance' anyway?. Functional Ecology, 2014, 28, 1330-1343.	1.7	46

#	Article	IF	CITATIONS
109	Scaling up flammability from individual leaves to fuel beds. Oikos, 2017, 126, 1428-1438.	1.2	45
110	Leaf size estimation based on leaf length, width and shape. Annals of Botany, 2021, 128, 395-406.	1.4	42
111	Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species. New Phytologist, 2012, 193, 409-419.	3.5	41
112	A survey of seed and seedling characters in 1744 Australian dicotyledon species: cross-species trait correlations and correlated trait-shifts within evolutionary lineages. Biological Journal of the Linnean Society, 2000, 69, 521-547.	0.7	39
113	The validity of optimal leaf traits modelled on environmental conditions. New Phytologist, 2019, 221, 1409-1423.	3.5	38
114	Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist, 2019, 223, 607-618.	3.5	37
115	A roadmap to plant functional island biogeography. Biological Reviews, 2021, 96, 2851-2870.	4.7	37
116	Fame, glory and neglect in meta-analyses. Trends in Ecology and Evolution, 2011, 26, 493-494.	4.2	36
117	Detecting myrtle rust (<i>Austropuccinia psidii</i>) on lemon myrtle trees using spectral signatures and machine learning. Plant Pathology, 2018, 67, 1114-1121.	1.2	36
118	Intraspecific variation in soy across the leaf economics spectrum. Annals of Botany, 2019, 123, 107-120.	1.4	36
119	Growingâ€season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity. Global Change Biology, 2020, 26, 1833-1841.	4.2	36
120	Sapwood capacitance is greater in evergreen sclerophyll species growing in high compared to Iowâ€rainfall environments. Functional Ecology, 2014, 28, 734-744.	1.7	34
121	Is there a latitudinal gradient in seed production?. Ecography, 2009, 32, 78-82.	2.1	31
122	Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event. Nature Plants, 2017, 3, 17104.	4.7	31
123	Safety margins and adaptive capacity of vegetation to climate change. Scientific Reports, 2019, 9, 8241.	1.6	31
124	Functional diversity of the Australian flora: Strong links to species richness and climate. Journal of Vegetation Science, 2021, 32, e13018.	1.1	28
125	Bark traits, decomposition and flammability of Australian forest trees. Australian Journal of Botany, 2017, 65, 327.	0.3	27
126	Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements. New Phytologist, 2021, 232, 1286-1296.	3.5	26

#	Article	IF	CITATIONS
127	Incorporation of plant traits in a land surface model helps explain the global biogeographical distribution of major forest functional types. Global Ecology and Biogeography, 2017, 26, 304-317.	2.7	25
128	Geographic Variation in Eucalyptus diversifolia (Myrtaceae) and the Recognition of New Subspecies E. diversifolia subsp. hesperia and E. diversifolia subsp. megacarpa. Australian Systematic Botany, 1997, 10, 651.	0.3	24
129	When and where soil is important to modify the carbon and water economy of leaves. New Phytologist, 2020, 228, 121-135.	3.5	24
130	Rising CO ₂ and warming reduce global canopy demand for nitrogen. New Phytologist, 2022, 235, 1692-1700.	3.5	23
131	Convergence in Maximum Stomatal Conductance of C3 Woody Angiosperms in Natural Ecosystems Across Bioclimatic Zones. Frontiers in Plant Science, 2019, 10, 558.	1.7	22
132	Multispectral, Aerial Disease Detection for Myrtle Rust (Austropuccinia psidii) on a Lemon Myrtle Plantation. Drones, 2019, 3, 25.	2.7	22
133	Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB PLANTS, 2019, 11, plz024.	1.2	21
134	Summer solstice marks a seasonal shift in temperature sensitivity of stem growth and nitrogen-use efficiency in cold-limited forests. Agricultural and Forest Meteorology, 2018, 248, 469-478.	1.9	20
135	Climate warming and plant biomechanical defences: Silicon addition contributes to herbivore suppression in a pasture grass. Functional Ecology, 2019, 33, 587-596.	1.7	20
136	Developing a spectral disease index for myrtle rust (Austropuccinia psidii). Plant Pathology, 2019, 68, 738-745.	1.2	19
137	Leaf trait variation is similar among genotypes of <i>Eucalyptus camaldulensis</i> from differing climates and arises in plastic responses to the seasons rather than water availability. New Phytologist, 2020, 227, 780-793.	3.5	19
138	Enhanced photosynthetic nitrogen use efficiency and increased nitrogen allocation to photosynthetic machinery under cotton domestication. Photosynthesis Research, 2021, 150, 239-250.	1.6	19
139	Functional biogeography of Neotropical moist forests: Trait–climate relationships and assembly patterns of tree communities. Global Ecology and Biogeography, 2021, 30, 1430-1446.	2.7	18
140	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
141	Biomechanical and leaf–climate relationships: A comparison of ferns and seed plants. American Journal of Botany, 2014, 101, 338-347.	0.8	17
142	Stem diameter growth rates in a fireâ€prone savanna correlate with photosynthetic rate and branchâ€scale biomass allocation, but not specific leaf area. Austral Ecology, 2019, 44, 339-350.	0.7	17
143	Parenchyma Abundance in Wood of Evergreen Trees Varies Independently of Nutrients. Frontiers in Plant Science, 2020, 11, 86.	1.7	15
144	Comparisons of photosynthetic and anatomical traits between wild and domesticated cotton. Journal of Experimental Botany, 2022, 73, 873-885.	2.4	15

#	Article	IF	CITATIONS
145	AnimalTraits - a curated animal trait database for body mass, metabolic rate and brain size. Scientific Data, 2022, 9, .	2.4	15
146	To recycle or steal? Nutrient resorption in Australian and Brazilian mistletoes from three Iowâ€phosphorus sites. Oikos, 2017, 126, 32-39.	1.2	12
147	Effects of plant hydraulic traits on the flammability of live fine canopy fuels. Functional Ecology, 2021, 35, 835-846.	1.7	12
148	Scaling-up from leaf to canopy-aggregate properties in sclerophyll shrub species. Austral Ecology, 2006, 31, 310-316.	0.7	11
149	Environmental associations of abundance-weighted functional traits in Australian plant communities. Basic and Applied Ecology, 2022, 58, 98-109.	1.2	11
150	Leaf trait adaptations of xylem-tapping mistletoes and their hosts in sites of contrasting aridity. Plant and Soil, 2017, 415, 117-130.	1.8	10
151	Disentangling direct and indirect effects of island area on plant functional trait distributions. Journal of Biogeography, 2021, 48, 2098-2110.	1.4	10
152	Evidence from the proteome for local adaptation to extreme heat in a widespread tree species. Functional Ecology, 2019, 33, 436-446.	1.7	9
153	Assessing the vulnerability of plant functional trait strategies to climate change. Global Ecology and Biogeography, 2022, 31, 1194-1206.	2.7	9
154	Ecological strategies of (pl)ants: Towards a worldâ€wide worker economic spectrum for ants. Functional Ecology, 2023, 37, 13-25.	1.7	9
155	Enhanced leaf turnover and nitrogen recycling sustain CO2 fertilization effect on tree-ring growth. Nature Ecology and Evolution, 2022, 6, 1271-1278.	3.4	9
156	The Leaf Economics Spectrum and its Underlying Physiological and Anatomical Principles. Advances in Photosynthesis and Respiration, 2018, , 451-471.	1.0	8
157	Applying the economic concept of profitability to leaves. Scientific Reports, 2021, 11, 49.	1.6	7
158	Nitrogen concentration and physical properties are key drivers of woody tissue respiration. Annals of Botany, 2022, 129, 633-646.	1.4	4
159	Zanne et al. reply. Nature, 2015, 521, E6-E7.	13.7	3