Pengbo Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599270/publications.pdf

Version: 2024-02-01

932766		1372195	
398	10	10	
citations	h-index	g-index	
10	10	211	
10	10	211	
docs citations	times ranked	citing authors	
	citations 10	398 10 citations h-index 10 10	

#	Article	IF	CITATIONS
1	Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chemistry, 2017, 230, 627-636.	4.2	103
2	Characterization of sea cucumber (<i>stichopus japonicus</i>) ovum hydrolysates: calcium chelation, solubility and absorption into intestinal epithelial cells. Journal of the Science of Food and Agriculture, 2017, 97, 4604-4611.	1.7	46
3	<i>In vitro</i> digestion profile and calcium absorption studies of a sea cucumber ovum derived heptapeptide–calcium complex. Food and Function, 2018, 9, 4582-4592.	2.1	44
4	Calcium binding to herring egg phosphopeptides: Binding characteristics, conformational structure and intermolecular forces. Food Chemistry, 2020, 310, 125867.	4.2	43
5	Egg-White-Derived Antioxidant Peptide as an Efficient Nanocarrier for Zinc Delivery through the Gastrointestinal System. Journal of Agricultural and Food Chemistry, 2020, 68, 2232-2239.	2.4	33
6	Calcium Delivery System Assembled by a Nanostructured Peptide Derived from the Sea Cucumber Ovum. Journal of Agricultural and Food Chemistry, 2019, 67, 12283-12292.	2.4	32
7	Formation of crystalline nanoparticles by iron binding to pentapeptide (Asp-His-Thr-Lys-Glu) from egg white hydrolysates. Food and Function, 2017, 8, 3297-3305.	2.1	30
8	Optimised condition for preparing sea cucumber ovum hydrolysate–calcium complex and its structural analysis. International Journal of Food Science and Technology, 2017, 52, 1914-1922.	1.3	29
9	Antarctic Krill Derived Nonapeptide as an Effective Iron-Binding Ligand for Facilitating Iron Absorption via the Small Intestine. Journal of Agricultural and Food Chemistry, 2020, 68, 11290-11300.	2.4	23
10	The formation mechanism of a sea cucumber ovum derived heptapeptide–calcium nanocomposite and its digestion/absorption behavior. Food and Function, 2019, 10, 8240-8249.	2.1	15