Maja Kosecka-Strojek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clonal Structure and Characterization of Staphylococcus aureus Strains from Invasive Infections in Paediatric Patients from South Poland: Association between Age, spa Types, Clonal Complexes, and Genetic Markers. PLoS ONE, 2016, 11, e0151937.	2.5	36
2	Coagulase-negative staphylococci (CoNS) as a significant etiological factor of laryngological infections: a review. Annals of Clinical Microbiology and Antimicrobials, 2020, 19, 26.	3.8	30
3	Emergence of linezolid-resistant Staphylococcus epidermidis in the tertiary children's hospital in Cracow, Poland. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1717-1725.	2.9	23
4	Presence of egc-positive major clones ST 45, 30 and 22 among methicillin-resistant andÂmethicillin-susceptible oral Staphylococcus aureus strains. Scientific Reports, 2020, 10, 18889.	3.3	22
5	Epidemiology and Pathogenesis of <i>Staphylococcus</i> Bloodstream Infections in Humans: a Review. Polish Journal of Microbiology, 2021, 70, 13-23.	1.7	19
6	Development and Validation of a Reference Data Set for Assigning Staphylococcus Species Based on Next-Generation Sequencing of the 16S-23S rRNA Region. Frontiers in Cellular and Infection Microbiology, 2019, 9, 278.	3.9	18
7	Identification of Secreted Exoproteome Fingerprints of Highly-Virulent and Non-Virulent Staphylococcus aureus Strains. Frontiers in Cellular and Infection Microbiology, 2016, 6, 51.	3.9	15
8	Distribution and antibiotic-resistance of different <i>Staphylococcus</i> species identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) isolated from the oral cavity. Journal of Oral Microbiology, 2021, 13, 1983322.	2.7	13
9	Development of a reference data set for assigning Streptococcus and Enterococcus species based on next generation sequencing of the 16S–23S rRNA region. Antimicrobial Resistance and Infection Control, 2019, 8, 178.	4.1	12
10	Daptomycin-resistant Staphylococcus pettenkoferi of human origin Acta Biochimica Polonica, 2016, 63, 297-301.	0.5	10
11	Staphylococcal Ecology and Epidemiology. , 2018, , 11-24.		8
12	Clustering of Staphylococcus aureus bovine mastitis strains from regions of Central-Eastern Poland based on their biochemical and genetic characteristics. Polish Journal of Veterinary Sciences, 2015, 18, 333-342.	0.2	7
13	Human skin microbiota-friendly lysostaphin. International Journal of Biological Macromolecules, 2021, 183, 852-860.	7.5	7
14	Multiple-locus variable-number tandem repeat fingerprinting as a method for rapid and cost-effective typing of animal-associated Staphylococcus aureus strains from lineages other than sequence type 398. Journal of Medical Microbiology, 2016, 65, 1494-1504.	1.8	7
15	Species determination within Staphylococcus genus by extended PCR-restriction fragment length polymorphism of saoC gene. FEMS Microbiology Letters, 2015, 362, 1-11.	1.8	6
16	First Case of Staphylococci Carrying Linezolid Resistance Genes from Laryngological Infections in Poland. Pathogens, 2021, 10, 335.	2.8	6
17	Characteristics of advanced methods used for typing bacterial isolates from mastitis with particular reference to Staphylococci. Polish Journal of Veterinary Sciences, 2018, 21, 229-239.	0.2	6
18	Effect of Staphylococcus aureus infection on the heat stress protein 70 (HSP70) level in chicken embryo tissues. Poultry Science, 2021, 100, 101119.	3.4	5

MAJA KOSECKA-STROJEK

#	Article	IF	CITATIONS
19	Identification of Clinically Relevant Streptococcus and Enterococcus Species Based on Biochemical Methods and 16S rRNA, sodA, tuf, rpoB, and recA Gene Sequencing. Pathogens, 2020, 9, 939.	2.8	4
20	New Insight into Genotypic and Phenotypic Relatedness of <i>Staphylococcus aureus</i> Strains from Human Infections or Animal Reservoirs. Polish Journal of Microbiology, 2019, 68, 93-104.	1.7	3
21	Thymol derivatives from the roots of Xerolekia speciosissima an endemic species of the pre-Alpine area. Phytochemistry Letters, 2019, 30, 235-237.	1.2	2
22	Preliminary evaluation of application of a 3-dimensional network structure of siloxanes Dergall preparation on chick embryo development and microbiological status of eggshells. Poultry Science, 2020, 99, 1581-1590.	3.4	2
23	May StaphylococcusÂlugdunensis Be an Etiological Factor of Chronic Maxillary Sinuses Infection?. International Journal of Molecular Sciences, 2022, 23, 6450.	4.1	2
24	Experimental Animal Models in Evaluation of Staphylococcal Pathogenicity. , 2018, , 265-279.		1
25	Staphylococcal saoABC Operon Codes for a DNA-Binding Protein SaoC Implicated in the Response to Nutrient Deficit. International Journal of Molecular Sciences, 2022, 23, 6443.	4.1	1
26	Phage-Associated Virulence Determinants of Staphylococcus aureus. , 2018, , 173-183.		0