Zhengzhong Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/159904/publications.pdf Version: 2024-02-01

		5896	11308
321	22,891	81	136
papers	citations	h-index	g-index
331	331	331	23496
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Surprising strength of silkworm silk. Nature, 2002, 418, 741-741.	27.8	855
2	Reduced Mesoporous Co ₃ O ₄ Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Advanced Energy Materials, 2014, 4, 1400696.	19.5	852
3	Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys via Tuning of Intermediate Adsorption. Journal of the American Chemical Society, 2020, 142, 5702-5708.	13.7	638
4	Cu, Coâ€Embedded Nâ€Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. Advanced Energy Materials, 2017, 7, 1700193.	19.5	487
5	Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO ₂ Reduction to CH ₄ . ACS Catalysis, 2018, 8, 7113-7119.	11.2	486
6	From Water Oxidation to Reduction: Homologous Ni–Co Based Nanowires as Complementary Water Splitting Electrocatalysts. Advanced Energy Materials, 2015, 5, 1402031.	19.5	448
7	Boosting CO ₂ Electroreduction to CH ₄ via Tuning Neighboring Single-Copper Sites. ACS Energy Letters, 2020, 5, 1044-1053.	17.4	326
8	Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation. Nature Communications, 2019, 10, 2877.	12.8	279
9	Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophysical Chemistry, 2001, 89, 25-34.	2.8	277
10	Relationships between supercontraction and mechanical properties of spider silk. Nature Materials, 2005, 4, 901-905.	27.5	270
11	Synthesis of 2Dâ€Mesoporousâ€Carbon/MoS ₂ Heterostructures with Wellâ€Defined Interfaces for Highâ€Performance Lithiumâ€ion Batteries. Advanced Materials, 2016, 28, 9385-9390.	21.0	253
12	CuCo Hybrid Oxides as Bifunctional Electrocatalyst for Efficient Water Splitting. Advanced Functional Materials, 2016, 26, 8555-8561.	14.9	251
13	The effect of spinning conditions on the mechanics of a spider's dragline silk. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2339-2346.	2.6	248
14	Synchrotron FTIR Microspectroscopy of Single Natural Silk Fibers. Biomacromolecules, 2011, 12, 3344-3349.	5.4	243
15	Interlaced NiS ₂ –MoS ₂ nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions. Journal of Materials Chemistry A, 2016, 4, 13439-13443.	10.3	241
16	Co–Niâ€Based Nanotubes/Nanosheets as Efficient Water Splitting Electrocatalysts. Advanced Energy Materials, 2016, 6, 1501661.	19.5	232
17	Enhancing Perovskite Solar Cell Performance by Interface Engineering Using CH ₃ NH ₃ PbBr _{0.9} I _{2.1} Quantum Dots. Journal of the American Chemical Society, 2016, 138, 8581-8587.	13.7	232
18	Superb Alkaline Hydrogen Evolution and Simultaneous Electricity Generation by Ptâ€Decorated Ni ₃ N Nanosheets. Advanced Energy Materials, 2017, 7, 1601390.	19.5	225

#	Article	IF	CITATIONS
19	Doxorubicin‣oaded Magnetic Silk Fibroin Nanoparticles for Targeted Therapy of Multidrugâ€Resistant Cancer. Advanced Materials, 2014, 26, 7393-7398.	21.0	221
20	Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Research, 2018, 11, 2992-3008.	10.4	221
21	Animal silks: their structures, properties and artificial production. Chemical Communications, 2009, , 6515.	4.1	216
22	Frequency Domain Detection of Biomolecules Using Silicon Nanowire Biosensors. Nano Letters, 2010, 10, 3179-3183.	9.1	203
23	Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2017, 7, 1701456.	19.5	203
24	Carbon-Coated Co ³⁺ -Rich Cobalt Selenide Derived from ZIF-67 for Efficient Electrochemical Water Oxidation. ACS Applied Materials & Interfaces, 2016, 8, 20534-20539.	8.0	198
25	Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of β-Sheet Domains. ACS Applied Materials & Interfaces, 2017, 9, 17489-17498.	8.0	190
26	Tuning of CO ₂ Reduction Selectivity on Metal Electrocatalysts. Small, 2017, 13, 1701809.	10.0	182
27	Physically Crosslinked Biocompatible Silkâ€Fibroinâ€Based Hydrogels with High Mechanical Performance. Advanced Functional Materials, 2016, 26, 872-880.	14.9	181
28	Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis. Advanced Energy Materials, 2018, 8, 1702704.	19.5	181
29	Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated <i>Bombyx mori</i> Silk Fibroin are Tougher than their Natural Counterparts. Advanced Materials, 2009, 21, 366-370.	21.0	179
30	Eggâ€Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 2016, 6, 1600794.	19.5	177
31	Regenerated Bombyx silk solutions studied with rheometry and FTIR. Polymer, 2001, 42, 09969-09974.	3.8	176
32	Conformation transition kinetics of Bombyx mori silk protein. Proteins: Structure, Function and Bioinformatics, 2007, 68, 223-231.	2.6	174
33	Surface-Modified Silicon Nanoparticles with Ultrabright Photoluminescence and Single-Exponential Decay for Nanoscale Fluorescence Lifetime Imaging of Temperature. Journal of the American Chemical Society, 2013, 135, 14924-14927.	13.7	174
34	Nanostructured Bifunctional Redox Electrocatalysts. Small, 2016, 12, 5656-5675.	10.0	174
35	Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Research, 2013, 6, 167-173.	10.4	169
36	Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment. Journal of Materials Chemistry A, 2017, 5, 4163-4171.	10.3	162

#	Article	IF	CITATIONS
37	Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nature Communications, 2021, 12, 1580.	12.8	162
38	The preparation of regenerated silk fibroin microspheres. Soft Matter, 2007, 3, 910.	2.7	158
39	Nitrogenâ€Ðoped Core‧heath Carbon Nanotube Array for Highly Stretchable Supercapacitor. Advanced Energy Materials, 2017, 7, 1601814.	19.5	155
40	Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law. ACS Nano, 2016, 10, 8385-8393.	14.6	154
41	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chemistry, 2016, 8, 171-178.	13.6	153
42	A Mono-cuboctahedral Series of Gold Nanoclusters: Photoluminescence Origin, Large Enhancement, Wide Tunability, and Structure–Property Correlation. Journal of the American Chemical Society, 2019, 141, 5314-5325.	13.7	149
43	Effect of Metallic Ions on Silk Formation in the Mulberry Silkworm, Bombyx mori. Journal of Physical Chemistry B, 2005, 109, 16937-16945.	2.6	148
44	Oxygen Vacancy Tuning toward Efficient Electrocatalytic CO ₂ Reduction to C ₂ H ₄ . Small Methods, 2019, 3, 1800449.	8.6	146
45	Designing Copperâ€Based Catalysts for Efficient Carbon Dioxide Electroreduction. Advanced Materials, 2021, 33, e2005798.	21.0	145
46	The effect of solvents on the contraction and mechanical properties of spider silk. Polymer, 1999, 40, 1799-1806.	3.8	143
47	Sensitive enzymatic glucose detection by TiO ₂ nanowire photoelectrochemical biosensors. Journal of Materials Chemistry A, 2014, 2, 6153-6157.	10.3	139
48	Nanostructured Copperâ€Based Electrocatalysts for CO ₂ Reduction. Small Methods, 2018, 2, 1800121.	8.6	139
49	Polarization Engineering of Covalent Triazine Frameworks for Highly Efficient Photosynthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Advanced Materials, 2022, 34, e2110266.	21.0	136
50	Myriophyllum-like hierarchical TiN@Ni ₃ N nanowire arrays for bifunctional water splitting catalysts. Journal of Materials Chemistry A, 2016, 4, 5713-5718.	10.3	134
51	A fiber-shaped aqueous lithium ion battery with high power density. Journal of Materials Chemistry A, 2016, 4, 9002-9008.	10.3	132
52	Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites. ACS Macro Letters, 2014, 3, 146-152.	4.8	131
53	Wet-Spinning of Regenerated Silk Fiber from Aqueous Silk Fibroin Solution: Discussion of Spinning Parameters. Biomacromolecules, 2010, 11, 1-5.	5.4	126
54	High-Performance Perovskite Photoanode Enabled by Ni Passivation and Catalysis. Nano Letters, 2015, 15, 3452-3457.	9.1	122

#	Article	IF	CITATIONS
55	Effect of Various Dissolution Systems on the Molecular Weight of Regenerated Silk Fibroin. Biomacromolecules, 2013, 14, 285-289.	5.4	120
56	Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. Journal of Colloid and Interface Science, 2020, 577, 109-114.	9.4	120
57	Modulating Materials by Orthogonally Oriented βâ€Strands: Composites of Amyloid and Silk Fibroin Fibrils. Advanced Materials, 2014, 26, 4569-4574.	21.0	119
58	Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nature Catalysis, 2022, 5, 251-258.	34.4	118
59	Electronâ€Deficient Cu Sites on Cu ₃ Ag ₁ Catalyst Promoting CO ₂ Electroreduction to Alcohols. Advanced Energy Materials, 2020, 10, 2001987.	19.5	117
60	The natural silk spinning process. FEBS Journal, 2001, 268, 6600-6606.	0.2	116
61	Enhancing the Gelation and Bioactivity of Injectable Silk Fibroin Hydrogel with Laponite Nanoplatelets. ACS Applied Materials & Interfaces, 2016, 8, 9619-9628.	8.0	114
62	Understanding the Mechanical Properties of <i>Antheraea Pernyi</i> Silk—From Primary Structure to Condensed Structure of the Protein. Advanced Functional Materials, 2011, 21, 729-737.	14.9	111
63	NbO ₂ Electrocatalyst Toward 32% Faradaic Efficiency for N ₂ Fixation. Small Methods, 2019, 3, 1800386.	8.6	111
64	Optical Spectroscopy To Investigate the Structure of RegeneratedBombyx moriSilk Fibroin in Solution. Biomacromolecules, 2004, 5, 773-779.	5.4	109
65	CuCoO _{<i>x</i>} /FeOOH Core–Shell Nanowires as an Efficient Bifunctional Oxygen Evolution and Reduction Catalyst. ACS Energy Letters, 2017, 2, 2498-2505.	17.4	109
66	Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 19821.	6.7	106
67	Photoelectrochemical Conversion from Graphitic C ₃ N ₄ Quantum Dot Decorated Semiconductor Nanowires. ACS Applied Materials & Interfaces, 2016, 8, 12772-12779.	8.0	103
68	A flexible ligand-based wavy layered metal–organic framework for lithium-ion storage. Journal of Colloid and Interface Science, 2015, 445, 320-325.	9.4	102
69	Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO2 conversion. Nano Research, 2019, 12, 2324-2329.	10.4	101
70	Structure and Behavior of Regenerated Spider Silk. Macromolecules, 2003, 36, 1157-1161.	4.8	97
71	Efficient solar-driven electrocatalytic CO2 reduction in a redox-medium-assisted system. Nature Communications, 2018, 9, 5003.	12.8	97
72	Conformation Transition in Silk Protein Films Monitored by Time-Resolved Fourier Transform Infrared Spectroscopy: Effect of Potassium Ions onNephilaSpidroin Filmsâ€. Biochemistry, 2002, 41, 14944-14950.	2.5	91

#	Article	IF	CITATIONS
73	Multi-layered mesoporous TiO ₂ thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. Journal of Materials Chemistry A, 2013, 1, 1591-1599.	10.3	91
74	Bifunctional CoP and CoN porous nanocatalysts derived from ZIF-67 in situ grown on nanowire photoelectrodes for efficient photoelectrochemical water splitting and CO ₂ reduction. Journal of Materials Chemistry A, 2016, 4, 15353-15360.	10.3	90
75	Two distinct \hat{I}^2 -sheet fibrils from silk protein. Chemical Communications, 2009, , 7506.	4.1	89
76	Nanowire arrays restore vision in blind mice. Nature Communications, 2018, 9, 786.	12.8	89
77	Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Materials Science and Engineering C, 2009, 29, 2270-2274.	7.3	88
78	Moisture Effects on <i>Antheraea pernyi</i> Silk's Mechanical Property. Macromolecules, 2009, 42, 7877-7880.	4.8	87
79	Hydrogel Assembly with Hierarchical Alignment by Balancing Electrostatic Forces. Advanced Materials Interfaces, 2016, 3, 1500687.	3.7	87
80	Electronic Tuning of Co, Niâ€Based Nanostructured (Hydr)oxides for Aqueous Electrocatalysis. Advanced Functional Materials, 2018, 28, 1804886.	14.9	87
81	Strong Collagen Hydrogels by Oxidized Dextran Modification. ACS Sustainable Chemistry and Engineering, 2014, 2, 1318-1324.	6.7	86
82	The effect of solvents on spider silk studied by mechanical testing and single-fibre Raman spectroscopy. International Journal of Biological Macromolecules, 1999, 24, 295-300.	7.5	82
83	Poly(vinyl alcohol) Hydrogels with Integrated Toughness, Conductivity, and Freezing Tolerance Based on Ionic Liquid/Water Binary Solvent Systems. ACS Applied Materials & Interfaces, 2021, 13, 29008-29020.	8.0	82
84	Dramatic Enhancement of Graphene Oxide/Silk Nanocomposite Membranes: Increasing Toughness, Strength, and Young's modulus via Annealing of Interfacial Structures. ACS Applied Materials & Interfaces, 2016, 8, 24962-24973.	8.0	81
85	Investigation of Rheological Properties and Conformation of Silk Fibroin in the Solution of AmimCl. Biomacromolecules, 2012, 13, 1875-1881.	5.4	80
86	Hierarchical SnO2–Fe2O3 heterostructures as lithium-ion battery anodes. Journal of Materials Chemistry, 2012, 22, 21923.	6.7	79
87	Insight into the Structure of Single Antheraea pernyi Silkworm Fibers Using Synchrotron FTIR Microspectroscopy. Biomacromolecules, 2013, 14, 1885-1892.	5.4	78
88	Homologous metal-free electrocatalysts grown on three-dimensional carbon networks for overall water splitting in acidic and alkaline media. Journal of Materials Chemistry A, 2016, 4, 12878-12883.	10.3	75
89	Mesoporous TiO ₂ Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science, 2015, 1, 400-408.	11.3	74
90	Preparation and characterization of HY zeolite-filled chitosan membranes for pervaporation separation. Journal of Applied Polymer Science, 2001, 79, 1144-1149.	2.6	73

#	Article	IF	CITATIONS
91	Physically Cross-Linked Silk Fibroin-Based Tough Hydrogel Electrolyte with Exceptional Water Retention and Freezing Tolerance. ACS Applied Materials & Interfaces, 2020, 12, 25353-25362.	8.0	73
92	Sub-5Ânm SnO ₂ chemically coupled hollow carbon spheres for efficient electrocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2018, 6, 20121-20127.	10.3	72
93	Epitaxial Growth of Latticeâ€Mismatched Core–Shell TiO ₂ @MoS ₂ for Enhanced Lithiumâ€lon Storage. Small, 2016, 12, 2792-2799.	10.0	71
94	Robust Protein Hydrogels from Silkworm Silk. ACS Sustainable Chemistry and Engineering, 2016, 4, 1500-1506.	6.7	71
95	One-dimensional nanostructures for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16382-16392.	10.3	70
96	Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites. Nature Communications, 2019, 10, 3786.	12.8	70
97	Paclitaxelâ€loaded silk fibroin nanospheres. Journal of Biomedical Materials Research - Part A, 2012, 100A, 203-210.	4.0	69
98	The spinning processes for spider silk. Soft Matter, 2006, 2, 448.	2.7	68
99	Multi-scale magnetic coupling of Fe@SiO ₂ @C–Ni yolk@triple-shell microspheres for broadband microwave absorption. Nanoscale, 2019, 11, 17270-17276.	5.6	68
100	Chemical Vapor Deposition Growth of Well-Aligned Carbon Nanotube Patterns on Cubic Mesoporous Silica Films by Soft Lithography. Chemistry of Materials, 2001, 13, 2240-2242.	6.7	67
101	Macroporous chitosan/carboxymethylcellulose blend membranes and their application for lysozyme adsorption. Journal of Applied Polymer Science, 2005, 96, 1267-1274.	2.6	66
102	Colloidal Stability of Silk Fibroin Nanoparticles Coated with Cationic Polymer for Effective Drug Delivery. ACS Applied Materials & Interfaces, 2015, 7, 21254-21262.	8.0	66
103	Defective graphene for electrocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2019, 534, 332-337.	9.4	66
104	Electrocatalytic Reactions for Converting CO ₂ to Valueâ€Added Products. Small Science, 2021, 1, 2100043.	9.9	66
105	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampereâ€Level Electrosynthesis of Formate from CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 25741-25745.	13.8	66
106	Dual-Atomic Cu Sites for Electrocatalytic CO Reduction to C ₂₊ Products. , 2021, 3, 1729-1737.		66
107	Elasticity of Spider Silks. Biomacromolecules, 2008, 9, 1782-1786.	5.4	65
108	\hat{I}^2 -turn formation during the conformation transition in silk fibroin. Soft Matter, 2009, 5, 2777.	2.7	65

#	Article	IF	CITATIONS
109	Plant Protein-Directed Synthesis of Luminescent Gold Nanocluster Hybrids for Tumor Imaging. ACS Applied Materials & Interfaces, 2018, 10, 83-90.	8.0	64
110	FTIR imaging, a useful method for studying the compatibility of silk fibroin-based polymer blends. Polymer Chemistry, 2013, 4, 5401.	3.9	63
111	Exploration of the tight structural–mechanical relationship in mulberry and non-mulberry silkworm silks. Journal of Materials Chemistry B, 2016, 4, 4337-4347.	5.8	62
112	Mesoporous Fe ₂ O ₃ –CdS Heterostructures for Real-Time Photoelectrochemical Dynamic Probing of Cu ²⁺ . Analytical Chemistry, 2015, 87, 6703-6708.	6.5	61
113	Insights into Silk Formation Process: Correlation of Mechanical Properties and Structural Evolution during Artificial Spinning of Silk Fibers. ACS Biomaterials Science and Engineering, 2016, 2, 1992-2000.	5.2	61
114	Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. Biomaterials Science, 2014, 2, 1338-1342.	5.4	59
115	Tough protein–carbon nanotube hybrid fibers comparable to natural spider silks. Journal of Materials Chemistry B, 2015, 3, 3940-3947.	5.8	59
116	Copper in the silk formation process ofBombyx morisilkworm. FEBS Letters, 2003, 554, 337-341.	2.8	57
117	The effect of water on the conformation transition of Bombyx mori silk fibroin. Vibrational Spectroscopy, 2009, 51, 105-109.	2.2	57
118	An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. Materials Letters, 2013, 95, 142-144.	2.6	57
119	The Robust Hydrogel Hierarchically Assembled from a pH Sensitive Peptide Amphiphile Based on Silk Fibroin. Biomacromolecules, 2013, 14, 2733-2738.	5.4	53
120	Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. Journal of Colloid and Interface Science, 2019, 552, 426-431.	9.4	53
121	Achieving High Aqueous Energy Storage via Hydrogenâ€Generation Passivation. Advanced Materials, 2016, 28, 7626-7632.	21.0	51
122	Injectable thixotropic hydrogel comprising regenerated silk fibroin and hydroxypropylcellulose. Soft Matter, 2012, 8, 2875.	2.7	50
123	Preparation and characterization of chitosan/Cu(II) affinity membrane for urea adsorption. Journal of Applied Polymer Science, 2003, 90, 1108-1112.	2.6	49
124	2D Assembly of Confined Space toward Enhanced CO ₂ Electroreduction. Advanced Energy Materials, 2018, 8, 1801230.	19.5	49
125	Natural Electroactive Hydrogel from Soy Protein Isolation. Biomacromolecules, 2010, 11, 3638-3643.	5.4	48
126	Robust soy protein films obtained by slight chemical modification of polypeptide chains. Polymer Chemistry, 2013, 4, 5425.	3.9	48

#	Article	IF	CITATIONS
127	Ordered Macroâ€∤Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Waterâ€Splitting. Advanced Energy Materials, 2014, 4, 1301725.	19.5	48
128	Nitrogen Reduction Reaction. Small Methods, 2019, 3, 1900070.	8.6	48
129	Lithiationâ€Enabled Highâ€Đensity Nitrogen Vacancies Electrocatalyze CO ₂ to C ₂ Products. Advanced Materials, 2021, 33, e2103150.	21.0	48
130	Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction. RSC Advances, 2015, 5, 6886-6891.	3.6	47
131	Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release. Nanoscale, 2016, 8, 6754-6760.	5.6	47
132	Single-Molecule Force Spectroscopy onBombyx moriSilk Fibroin by Atomic Force Microscopy. Langmuir, 2000, 16, 4305-4308.	3.5	46
133	Zn ₄ Sb ₃ Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability. Advanced Energy Materials, 2013, 3, 286-289.	19.5	46
134	Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis. Journal of Materials Chemistry A, 2019, 7, 16979-16983.	10.3	46
135	Growth of Singleâ€Layered Twoâ€Dimensional Mesoporous Polymer/Carbon Films by Selfâ€Assembly of Monomicelles at the Interfaces of Various Substrates. Angewandte Chemie - International Edition, 2015, 54, 8425-8429.	13.8	45
136	Intelligent Silk Fibroin Ionotronic Skin for Temperature Sensing. Advanced Materials Technologies, 2020, 5, 2000430.	5.8	45
137	Ru-doped, oxygen-vacancy-containing CeO ₂ nanorods toward N ₂ electroreduction. Journal of Materials Chemistry A, 2020, 8, 7229-7234.	10.3	45
138	Extended wet-spinning can modify spider silk properties. Chemical Communications, 2005, , 2489.	4.1	44
139	Self-assembly of a peptide amphiphile based on hydrolysed Bombyx mori silk fibroin. Chemical Communications, 2011, 47, 10296.	4.1	44
140	Ultrafast and reversible thermochromism of a conjugated polymer material based on the assembly of peptide amphiphiles. Chemical Science, 2014, 5, 4189-4195.	7.4	44
141	Stability and rheological behaviors of different oil/water emulsions stabilized by natural silk fibroin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 475, 84-93.	4.7	44
142	Glass transitions in native silk fibres studied by dynamic mechanical thermal analysis. Soft Matter, 2016, 12, 5926-5936.	2.7	44
143	Bandgap Engineered Polypyrrole–Polydopamine Hybrid with Intrinsic Raman and Photoacoustic Imaging Contrasts. Nano Letters, 2018, 18, 7485-7493.	9.1	44
144	Mesoporous tin oxide for electrocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2018, 531, 564-569.	9.4	44

#	Article	IF	CITATIONS
145	Fabrication of Air-Stable and Conductive Silk Fibroin Gels. ACS Applied Materials & Interfaces, 2018, 10, 38466-38475.	8.0	43
146	Electrocatalytic Methane Oxidation Greatly Promoted by Chlorine Intermediates. Angewandte Chemie - International Edition, 2021, 60, 17398-17403.	13.8	43
147	Solarâ€Energyâ€Driven Photoelectrochemical Biosensing Using TiO ₂ Nanowires. Chemistry - A European Journal, 2015, 21, 11288-11299.	3.3	42
148	In-situ regrowth constructed magnetic coupling 1D/2D Fe assembly as broadband and high-efficient microwave absorber. Chemical Engineering Journal, 2021, 415, 128951.	12.7	42
149	Direct growth of mesoporous Sn-doped TiO2 thin films on conducting substrates for lithium-ion battery anodes. Journal of Materials Chemistry A, 2013, 1, 13222.	10.3	41
150	Electrolyte Driven Highly Selective CO ₂ Electroreduction at Low Overpotentials. ACS Catalysis, 2019, 9, 10440-10447.	11.2	41
151	Fluorous-Core Nanoparticle-Embedded Hydrogel Synthesized via Tandem Photo-Controlled Radical Polymerization: Facilitating the Separation of Perfluorinated Alkyl Substances from Water. ACS Applied Materials & Interfaces, 2020, 12, 24319-24327.	8.0	41
152	Artificial ligament made from silk protein/Laponite hybrid fibers. Acta Biomaterialia, 2020, 106, 102-113.	8.3	41
153	Flexible and stretchable chromatic fibers with high sensing reversibility. Chemical Science, 2016, 7, 5113-5117.	7.4	40
154	Formation kinetics and fractal characteristics of regenerated silk fibroin alcogel developed from nanofibrillar network. Soft Matter, 2010, 6, 1217.	2.7	39
155	Tailoring interface of lead-halide perovskite solar cells. Nano Research, 2017, 10, 1471-1497.	10.4	39
156	Water-Resistant Zein-Based Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 7668-7679.	6.7	39
157	Efficient CO ₂ Electroreduction to Ethanol by Cu ₃ Sn Catalyst. Small Methods, 2022, 6, e2101334.	8.6	39
158	Synergistic interactions during thermosensitive chitosan-β-glycerophosphate hydrogel formation. RSC Advances, 2011, 1, 282.	3.6	38
159	The Intrinsic Ability of Silk Fibroin to Direct the Formation of Diverse Aragonite Aggregates. Advanced Functional Materials, 2012, 22, 435-441.	14.9	38
160	A highly stretchable and anti-freezing silk-based conductive hydrogel for application as a self-adhesive and transparent ionotronic skin. Journal of Materials Chemistry C, 0, , .	5.5	38
161	Understanding Secondary Structures of Silk Materials via Micro- and Nano-Infrared Spectroscopies. ACS Biomaterials Science and Engineering, 2019, 5, 3161-3183.	5.2	37
162	Silk-based pressure/temperature sensing bimodal ionotronic skin with stimulus discriminability and low temperature workability. Chemical Engineering Journal, 2021, 422, 130091.	12.7	36

#	Article	IF	CITATIONS
163	Nanowire Biosensors for Label-Free, Real-Time, Ultrasensitive Protein Detection. Methods in Molecular Biology, 2011, 790, 223-237.	0.9	35
164	Behavior of silk protein at the airâ \in "water interface. Soft Matter, 2012, 8, 9705.	2.7	35
165	Floxuridine-loaded silk fibroin nanospheres. RSC Advances, 2014, 4, 18171-18177.	3.6	35
166	X-ray photoelectron spectroscopic and Raman analysis of silk fibroin–Cu(II) films. Biopolymers, 2006, 82, 144-151.	2.4	33
167	Control over Different Crystallization Stages of CaCO ₃ -Mediated by Silk Fibroin. Crystal Growth and Design, 2011, 11, 2164-2171.	3.0	33
168	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Materials, 2014, 6, e117-e117.	7.9	33
169	Conformation Transition of <i>Bombyx mori</i> Silk Protein Monitored by Time-Dependent Fourier Transform Infrared (FT-IR) Spectroscopy: Effect of Organic Solvent. Applied Spectroscopy, 2012, 66, 696-699.	2.2	32
170	Conformation transition kinetics and spinnability of regenerated silk fibroin with glycol, glycerol and polyethylene glycol. Materials Letters, 2012, 81, 13-15.	2.6	32
171	Free-standing highly ordered mesoporous carbon–silica composite thin films. Journal of Materials Chemistry A, 2013, 1, 13490.	10.3	32
172	Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements. Scientific Reports, 2017, 7, 11939.	3.3	32
173	Radiologic and histologic characterization of silk fibroin as scaffold coating for rabbit tracheal defect repair. Otolaryngology - Head and Neck Surgery, 2008, 139, 256-261.	1.9	31
174	Structure and properties of various hybrids fabricated by silk nanofibrils and nanohydroxyapatite. Nanoscale, 2016, 8, 20096-20102.	5.6	31
175	A facile fabrication of silk/MoS2 hybrids for Photothermal therapy. Materials Science and Engineering C, 2017, 79, 123-129.	7.3	31
176	Heterogeneous Electrocatalysts for CO ₂ Reduction. ACS Applied Energy Materials, 2021, 4, 1034-1044.	5.1	31
177	Ligand exchange triggered controlled-release targeted drug delivery system based on core–shell superparamagnetic mesoporous microspheres capped with nanoparticles. Journal of Materials Chemistry, 2012, 22, 17677.	6.7	30
178	Facile fabrication of the porous three-dimensional regenerated silk fibroin scaffolds. Materials Science and Engineering C, 2013, 33, 3522-3529.	7.3	30
179	Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement. Journal of the American Chemical Society, 2015, 137, 4260-4266.	13.7	30
180	Fast cooling induced grain-boundary-rich copper oxide for electrocatalytic carbon dioxide reduction to ethanol. Journal of Colloid and Interface Science, 2020, 570, 375-381.	9.4	30

#	Article	IF	CITATIONS
181	Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite. International Journal of Nanomedicine, 2014, 9, 4569.	6.7	29
182	Electrocatalysts: Co–Niâ€Based Nanotubes/Nanosheets as Efficient Water Splitting Electrocatalysts (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 6, .	19.5	29
183	Preparation and characterization of antibacterial poly(lactic acid) nanocomposites with N-halamine modified silica. International Journal of Biological Macromolecules, 2020, 155, 1468-1477.	7.5	29
184	Structural determination of protein-based polymer blends with a promising tool: combination of FTIR and STXM spectroscopic imaging. Physical Chemistry Chemical Physics, 2014, 16, 7741-7748.	2.8	28
185	Direct growth of mesoporous carbon-coated Ni nanoparticles on carbon fibers for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2876-2882.	10.3	28
186	Size-controllable dual drug-loaded silk fibroin nanospheres through a facile formation process. Journal of Materials Chemistry B, 2018, 6, 1179-1186.	5.8	28
187	The regenerated silk fibroin hydrogel with designed architecture bioprinted by its microhydrogel. Journal of Materials Chemistry B, 2019, 7, 4328-4337.	5.8	28
188	Achieving Efficient CO ₂ Electrochemical Reduction on Tunable In(OH) ₃ -Coupled Cu ₂ O-Derived Hybrid Catalysts. ACS Applied Materials & Interfaces, 2019, 11, 22346-22351.	8.0	28
189	Hybrid palladium nanoparticles and nickel single atom catalysts for efficient electrocatalytic ethanol oxidation. Journal of Materials Chemistry A, 2022, 10, 6129-6133.	10.3	28
190	Complex Formation of Silk Fibroin with Poly(acrylic acid). Polymer Journal, 2000, 32, 269-274.	2.7	27
191	A hierarchical adsorption material by incorporating mesoporous carbon into macroporous chitosan membranes. Journal of Materials Chemistry, 2012, 22, 11908.	6.7	27
192	Scalable synthesis of mesoporous titania microspheres via spray-drying method. Journal of Colloid and Interface Science, 2016, 479, 150-159.	9.4	27
193	A Robust, Resilient, and Multi-Functional Soy Protein-Based Hydrogel. ACS Sustainable Chemistry and Engineering, 2018, 6, 13730-13738.	6.7	27
194	Enhanced compatibility between poly(lactic acid) and poly (butylene adipate-co-terephthalate) by incorporation of N-halamine epoxy precursor. International Journal of Biological Macromolecules, 2020, 165, 460-471.	7.5	27
195	Efficient carboxylation of styrene and carbon dioxide by single-atomic copper electrocatalyst. Journal of Colloid and Interface Science, 2021, 601, 378-384.	9.4	27
196	Defectâ€Assisted Electron Tunneling for Photoelectrochemical CO ₂ Reduction to Ethanol at Low Overpotentials. Advanced Energy Materials, 2022, 12, .	19.5	27
197	Growth of calcium carbonate mediated by slowly released alginate. CrystEngComm, 2010, 12, 730-736.	2.6	26
198	Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers. Nano Letters, 2018, 18, 4716-4726.	9.1	26

#	Article	IF	CITATIONS
199	Highlyâ€Exposed Singleâ€Interlayered Cu Edges Enable Highâ€Rate CO ₂ â€toâ€CH ₄ Electrosynthesis. Advanced Energy Materials, 2022, 12, .	19.5	26
200	Soy protein-directed one-pot synthesis of gold nanomaterials and their functional conductive devices. Journal of Materials Chemistry B, 2016, 4, 3643-3650.	5.8	25
201	Sol–Gel Transition of Regenerated Silk Fibroins in Ionic Liquid/Water Mixtures. ACS Biomaterials Science and Engineering, 2016, 2, 12-18.	5.2	25
202	Morphology and Properties of a New Biodegradable Material Prepared from Zein and Poly(butylene) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
203	Fabrication of an alternative regenerated silk fibroin nanofiber and carbonated hydroxyapatite multilayered composite via layer-by-layer. Journal of Materials Science, 2013, 48, 150-155.	3.7	24
204	Understanding the variability of properties in Antheraea pernyi silk fibres. Soft Matter, 2014, 10, 6321-6331.	2.7	24
205	Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 13634-13638.	10.3	24
206	Understanding the Mechanical Properties and Structure Transition of Antheraea pernyi Silk Fiber Induced by Its Contraction. Biomacromolecules, 2018, 19, 1999-2006.	5.4	24
207	Silk-based hybrid microfibrous mats as guided bone regeneration membranes. Journal of Materials Chemistry B, 2021, 9, 2025-2032.	5.8	24
208	Three-dimensional WS ₂ nanosheet networks for H ₂ O ₂ produced for cell signaling. Nanoscale, 2016, 8, 5786-5792.	5.6	23
209	Bridged-multi-octahedral cobalt oxide nanocrystals with a Co-terminated surface as an oxygen evolution and reduction electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 7416-7422.	10.3	23
210	System Engineering Enhances Photoelectrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 1689-1700.	3.1	23
211	Selective chemical modification of soy protein for a tough and applicable plant protein-based material. Journal of Materials Chemistry B, 2015, 3, 5241-5248.	5.8	22
212	Enhanced Fibroblast Cellular Ligamentization Process to Polyethylene Terepthalate Artificial Ligament by Silk Fibroin Coating. Artificial Organs, 2016, 40, 385-393.	1.9	22
213	Porous Three-Dimensional Silk Fibroin Scaffolds for Tracheal Epithelial Regeneration <i>in Vitro</i> and <i>in Vivo</i> ACS Biomaterials Science and Engineering, 2018, 4, 2977-2985.	5.2	22
214	Silk fibroin and hydroxyapatite segmented coating enhances graft ligamentization and osseointegration processes of the polyethylene terephthalate artificial ligament <i>in vitro</i> and <i>in vivo</i> . Journal of Materials Chemistry B, 2018, 6, 5738-5749.	5.8	22
215	A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro. Journal of Biomaterials Applications, 2019, 34, 3-11.	2.4	22
216	Colorless Silk/Copper Sulfide Hybrid Fiber and Fabric with Spontaneous Heating Property under Sunlight. Biomacromolecules, 2020, 21, 1596-1603.	5.4	22

#	Article	IF	CITATIONS
217	Tamoxifen-loaded silk fibroin electrospun fibers. Materials Letters, 2016, 178, 31-34.	2.6	21
218	Pea Protein/Gold Nanocluster/Indocyanine Green Ternary Hybrid for Near-Infrared Fluorescence/Computed Tomography Dual-Modal Imaging and Synergistic Photodynamic/Photothermal Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 4799-4807.	5.2	21
219	Dual-loaded, long-term sustained drug releasing and thixotropic hydrogel for localized chemotherapy of cancer. Biomaterials Science, 2019, 7, 2975-2985.	5.4	21
220	Cryogenic toughness of natural silk and a proposed structure–function relationship. Materials Chemistry Frontiers, 2019, 3, 2507-2513.	5.9	21
221	Near-Infrared Characterization on the Secondary Structure of RegeneratedBombyx MoriSilk Fibroin. Applied Spectroscopy, 2006, 60, 1438-1441.	2.2	20
222	A simple semi-quantitative approach studying the in vivo degradation of regenerated silk fibroin scaffolds with different pore sizes. Materials Science and Engineering C, 2017, 79, 161-167.	7.3	20
223	Grafting of methyl methacrylate ontoAntheraea pernyi silk fiber with the assistance of supercritical CO2. Journal of Applied Polymer Science, 2006, 100, 1299-1305.	2.6	19
224	CoNiO2/TiN–TiOxNy composites for ultrahigh electrochemical energy storage and simultaneous glucose sensing. Journal of Materials Chemistry A, 2014, 2, 10904.	10.3	19
225	Precise correlation of macroscopic mechanical properties and microscopic structures of animal silks—using Antheraea pernyi silkworm silk as an example. Journal of Materials Chemistry B, 2017, 5, 6042-6048.	5.8	19
226	Direct Observation of Native Silk Fibroin Conformation in Silk Gland of <i>Bombyx mori</i> Silkworm. ACS Biomaterials Science and Engineering, 2020, 6, 1874-1879.	5.2	19
227	Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampereâ€Level Electrosynthesis of Formate from CO ₂ . Angewandte Chemie, 2021, 133, 25945-25949.	2.0	19
228	Hydroxyâ€Groupâ€Enriched In ₂ O ₃ Facilitates CO ₂ Electroreduction to Formate at Large Current Densities. Advanced Materials Interfaces, 2022, 9, .	3.7	19
229	Sub-5 nm porous nanocrystals: interfacial site-directed growth on graphene for efficient biocatalysis. Chemical Science, 2015, 6, 4029-4034.	7.4	18
230	Preparing 3D-printable silk fibroin hydrogels with robustness by a two-step crosslinking method. RSC Advances, 2020, 10, 27225-27234.	3.6	18
231	Mechanical properties and toughening mechanisms of natural silkworm silks and their composites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103942.	3.1	18
232	Determination of phase behaviour in all protein blend materials with multivariate FTIR imaging technique. Journal of Materials Chemistry B, 2015, 3, 834-839.	5.8	17
233	One-step synthesis of soy protein/graphene nanocomposites and their application in photothermal therapy. Materials Science and Engineering C, 2016, 68, 798-804.	7.3	17
234	Capping agent-free highly dispersed noble metal nanoparticles supported in ordered mesoporous carbon with short channels and their catalytic applications. RSC Advances, 2016, 6, 61064-61072.	3.6	17

#	Article	IF	CITATIONS
235	Colloidal nanocrystals for electrochemical reduction reactions. Journal of Colloid and Interface Science, 2017, 485, 308-327.	9.4	17
236	Synthesis of novel multi-hydroxyl <i>N</i> -halamine precursors based on barbituric acid and their applications in antibacterial poly(ethylene terephthalate) (PET) materials. Journal of Materials Chemistry B, 2020, 8, 8695-8701.	5.8	16
237	Steric effect induces CO electroreduction to CH ₄ on Cu–Au alloys. Journal of Materials Chemistry A, 2021, 9, 21779-21784.	10.3	16
238	Mechanically and electrically biocompatible hydrogel ionotronic fibers for fabricating structurally stable implants and enabling noncontact physioelectrical modulation. Materials Horizons, 2022, 9, 1735-1749.	12.2	16
239	Morphology and mechanical properties of soy protein scaffolds made by directional freezing. Journal of Applied Polymer Science, 2010, 118, 1658-1665.	2.6	15
240	Using Solvents with Different Molecular Sizes to Investigate the Structure of Antheraea Pernyi Silk. Biomacromolecules, 2013, 14, 3936-3942.	5.4	15
241	Design of Modular Peptide Surfactants and Their Surface Activity. Langmuir, 2017, 33, 7957-7967.	3.5	15
242	Oneâ€dimensional Nanomaterial Electrocatalysts for CO ₂ Fixation. Chemistry - an Asian Journal, 2019, 14, 3969-3980.	3.3	15
243	Facile Dissolution of Zein Using a Common Solvent Dimethyl Sulfoxide. Langmuir, 2019, 35, 6640-6649.	3.5	15
244	Electrochemical Methane Conversion. Small Structures, 2021, 2, 2100037.	12.0	15
245	Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. NPG Asia Materials, 2015, 7, e204-e204.	7.9	14
246	Formation of different gold nanostructures by silk nanofibrils. Materials Science and Engineering C, 2016, 64, 376-382.	7.3	14
247	Atomic-Level Copper Sites for Selective CO ₂ Electroreduction to Hydrocarbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 13536-13544.	6.7	14
248	Separator-Integrated, Reversely Connectable Symmetric Lithium-Ion Battery. Small, 2016, 12, 1091-1097.	10.0	13
249	Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel. Soft Matter, 2016, 12, 492-499.	2.7	13
250	Fabricating highly luminescent solid hybrids based on silicon nanoparticles: a simple, versatile and green method. Nanoscale, 2018, 10, 10250-10255.	5.6	13
251	Promoting N2 electroreduction to ammonia by fluorine-terminating Ti3C2Tx MXene. Nano Convergence, 2021, 8, 14.	12.1	13
252	Bioinspired Photo-Cross-Linking of Stretched Solid Silks for Enhanced Strength. ACS Biomaterials Science and Engineering, 2022, 8, 484-492.	5.2	13

#	Article	IF	CITATIONS
253	Lithium Vacancyâ€Tuned [CuO ₄] Sites for Selective CO ₂ Electroreduction to C ₂₊ Products. Small, 2022, 18, e2106433.	10.0	13
254	Natural Silk Spinningâ€Inspired Mesoâ€Assemblyâ€Processing Engineering Strategy for Fabricating Soft Tissueâ€Mimicking Biomaterials. Advanced Functional Materials, 2022, 32, .	14.9	13
255	Triple-scale structured superhydrophobic and highly oleophobic surfaces. RSC Advances, 2013, 3, 22332.	3.6	12
256	Aqueous Li-ion cells with superior cycling performance using multi-channeled polyaniline/Fe ₂ O ₃ nanotube anodes. Journal of Materials Chemistry A, 2014, 2, 20177-20181.	10.3	12
257	Silk Fibroin Acts as a Self-Emulsifier to Prepare Hierarchically Porous Silk Fibroin Scaffolds through Emulsion–Ice Dual Templates. ACS Omega, 2018, 3, 3396-3405.	3.5	12
258	Environmentally responsive composite films fabricated using silk nanofibrils and silver nanowires. Journal of Materials Chemistry C, 2018, 6, 12940-12947.	5.5	12
259	Synthesis of poly (γ-benzyl- <scp>L</scp> -glutamate) with well-defined terminal structures and its block polypeptides with alanine, leucine and phenylalanine. Polymer International, 2012, 61, 774-779.	3.1	11
260	Mesoporous carbon coated molybdenum oxide nanobelts for improved lithium ion storage. RSC Advances, 2014, 4, 29586-29590.	3.6	11
261	Artificial metabolism-inspired photoelectrochemical probing of biomolecules and cells. Journal of Materials Chemistry A, 2014, 2, 15752-15757.	10.3	11
262	Application of far-infrared spectroscopy to the structural identification of protein materials. Physical Chemistry Chemical Physics, 2018, 20, 11643-11648.	2.8	11
263	Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks. Journal of Materials Chemistry B, 2020, 8, 168-176.	5.8	11
264	Promoting electrocatalytic carbon monoxide reduction to ethylene on copper-polypyrrole interface. Journal of Colloid and Interface Science, 2021, 600, 847-853.	9.4	11
265	Animal protein-plant protein composite nanospheres for dual-drug loading and synergistic cancer therapy. Journal of Materials Chemistry B, 2022, 10, 3798-3807.	5.8	11
266	Photocatalytic CO ₂ conversion: from C1 products to multi-carbon oxygenates. Nanoscale, 2022, 14, 10268-10285.	5.6	11
267	Investigation on thermallyâ€induced conformation transition of soy protein film with variableâ€ŧemperature FTIR spectroscopy. Journal of Applied Polymer Science, 2012, 124, 2838-2845.	2.6	10
268	Characterization and assembly investigation of a dodecapeptide hydrolyzed from the crystalline domain of Bombyx mori silk fibroin. Polymer Chemistry, 2013, 4, 3005.	3.9	10
269	Elucidating the role of free polycationic chains in polycation gene carriers by free chains of polyethylenimine or N,N,N-trimethyl chitosan plus a certain polyplex. International Journal of Nanomedicine, 2014, 9, 3231.	6.7	10
270	An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model. Journal of Materials Chemistry B, 2021, 9, 5352-5364.	5.8	10

Zhengzhong Shao

#	Article	IF	CITATIONS
271	Bombyx mori silk fibroin-based immobilization method for preparation of urea electrode. Electroanalysis, 1992, 4, 669-672.	2.9	9
272	Microspheres of calcium carbonate composite regulated by sodium polyacrylates with various ways. Journal of Applied Polymer Science, 2009, 114, 3686-3692.	2.6	9
273	Silk fibroin-mediated biomineralization of calcium carbonate at the air/water interface. CrystEngComm, 2014, 16, 9176-9184.	2.6	9
274	Band-aligned C ₃ N _{4â^'x} S _{3x/2} stabilizes CdS/CuInGaS ₂ photocathodes for efficient water reduction. Journal of Materials Chemistry A, 2017, 5, 3167-3171.	10.3	9
275	Understanding humidity-induced actuation in Antheraea pernyi silks. Giant, 2020, 3, 100029.	5.1	9
276	Structural Changes in Spider Dragline Silk after Repeated Supercontraction–Stretching Processes. Biomacromolecules, 2020, 21, 5306-5314.	5.4	9
277	Electrochemical nitrogen fixation via bimetallic Sn-Ti sites on defective titanium oxide catalysts. Journal of Colloid and Interface Science, 2021, 588, 242-247.	9.4	9
278	A Crystalline Partially Fluorinated Triazine Covalent Organic Framework for Efficient Photosynthesis of Hydrogen Peroxide. Angewandte Chemie, 2022, 134, .	2.0	9
279	Electrocatalysts: From Water Oxidation to Reduction: Homologous Ni–Co Based Nanowires as Complementary Water Splitting Electrocatalysts (Adv. Energy Mater. 9/2015). Advanced Energy Materials, 2015, 5, .	19.5	8
280	Spray-drying of milk for oxygen evolution electrocatalyst and solar water splitting. Journal of Colloid and Interface Science, 2017, 487, 118-122.	9.4	8
281	Understanding the Continuous Dynamic Mechanical Behavior of Animal Silk. Macromolecules, 2021, 54, 249-258.	4.8	8
282	Electrochemical conversion of C1 molecules to sustainable fuels in solid oxide electrolysis cells. Chinese Journal of Catalysis, 2022, 43, 92-103.	14.0	8
283	Robust Silk Protein Hydrogels Made by a Facile One-Step Method and Their Multiple Applications. ACS Applied Bio Materials, 2022, 5, 3086-3094.	4.6	8
284	Silk Fibroin Nacre. Advanced Fiber Materials, 2022, 4, 1191-1208.	16.1	8
285	Compatibilization of acrylic polymer-silk fibroin blend fibers: 2. Morphology and mechanical properties of the compatilized blend fibers. Journal of Applied Polymer Science, 1999, 73, 2255-2264.	2.6	7
286	Quasi one-dimensional assembly of gold nanoparticles templated by a pH-sensitive peptide amphiphile from silk fibroin. RSC Advances, 2012, 2, 5599.	3.6	7
287	Doxorubicin hydrochloride and curcumin loaded silk fibroin/hydroxypropylcellulose hydrogels for localized chemotherapy of cancer. Journal of Controlled Release, 2015, 213, e39.	9.9	7
288	Multi-responsive polyethylene-polyamine/gelatin hydrogel induced by non-covalent interactions. RSC Advances, 2016, 6, 48661-48665.	3.6	7

#	Article	IF	CITATIONS
289	Conformation and self-assembly changes of isomeric peptide amphiphiles influenced by switching tyrosine in the sequences. Journal of Materials Chemistry B, 2017, 5, 5189-5195.	5.8	7
290	Chondrocytes cultured in silk-based biomaterials maintain function and cell morphology. International Journal of Artificial Organs, 2019, 42, 31-41.	1.4	7
291	Mechanism of Mechanical Training-Induced Self-Reinforced Viscoelastic Behavior of Highly Hydrated Silk Materials. Biomacromolecules, 2021, 22, 2189-2196.	5.4	7
292	Direct functionalization of natural silks through continuous force-reeling technique. Chemical Engineering Journal, 2022, 435, 134901.	12.7	7
293	Directed growth of multiwalled carbon nanotubes from ordered porous silica structures. Journal of Materials Chemistry, 2001, 11, 2934-2936.	6.7	6
294	Unconventional morphologies of CoO nanocrystals <i>via</i> controlled oxidation of cobalt oleate precursors. Chemical Communications, 2018, 54, 3867-3870.	4.1	6
295	PREPARATION OF HIGH MOLECULAR WEIGHT SOY PROTEIN AQUEOUS SOLUTION AND SEPARATION OF ITS MAIN COMPONENTS. Acta Polymerica Sinica, 2010, 010, 250-254.	0.0	6
296	Non-metallic T2-MRI agents based on conjugated polymers. Nature Communications, 2022, 13, 1994.	12.8	6
297	Morphology-dependent vanadium oxide nanostructures grown on Ti foil for Li-ion battery. Journal of Colloid and Interface Science, 2014, 432, 297-301.	9.4	5
298	Influences of film thickness and fabrication method on the surface structure and mineralization-templating of silk fibroin. RSC Advances, 2014, 4, 35258-35262.	3.6	5
299	Unconventional mesoporous single crystalline NiO by synergistically controlled evaporation and hydrolysis. Journal of Materials Chemistry A, 2017, 5, 23840-23843.	10.3	5
300	Interfacial Films Formed by a Biosurfactant Modularized with a Silken Tail. Journal of Physical Chemistry C, 2017, 121, 14658-14667.	3.1	5
301	A silk-based high impact composite for the core decompression of the femoral head. Journal of Materials Chemistry B, 2020, 8, 9734-9743.	5.8	5
302	Acquiring structural and mechanical information of a fibrous network through deep learning. Nanoscale, 2022, 14, 5044-5053.	5.6	5
303	Core–Shell Silicon@Mesoporous TiO ₂ Heterostructure: Towards Solarâ€Powered Photoelectrochemical Conversion. ChemNanoMat, 2016, 2, 647-651.	2.8	4
304	Precise tuning of heteroatom positions in polycyclic aromatic hydrocarbons for electrocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2020, 580, 623-629.	9.4	4
305	Electrocatalytic Methane Oxidation Greatly Promoted by Chlorine Intermediates. Angewandte Chemie, 2021, 133, 17538-17543.	2.0	4
306	Doxorubicin-Loaded Silk Fibroin Nanospheres. Acta Chimica Sinica, 2014, 72, 1164.	1.4	4

#	Article	IF	CITATIONS
307	Enhancement of the Mechanical Properties of Poly(lactic acid)/Epoxidized Soybean Oil Blends by the Addition of 3-Aminophenylboronic Acid. ACS Omega, 2022, 7, 17841-17848.	3.5	4
308	Electrocatalysts: Cu, Coâ€Embedded Nâ€Enriched Mesoporous Carbon for Efficient Oxygen Reduction and Hydrogen Evolution Reactions (Adv. Energy Mater. 17/2017). Advanced Energy Materials, 2017, 7, .	19.5	2
309	Electrocatalysis: Topotactic Engineering of Ultrathin 2D Nonlayered Nickel Selenides for Full Water Electrolysis (Adv. Energy Mater. 14/2018). Advanced Energy Materials, 2018, 8, 1870064.	19.5	2
310	Development of a Dual-drug-loaded Silk Fibroin Hydrogel and Study on Its Drugs Release Behaviors. Acta Chimica Sinica, 2021, 79, 1023.	1.4	2
311	Atomically-dispersed catalyst by solid-liquid phase transition for CO2 electroreduction. Science China Chemistry, 2021, 64, 1111-1112.	8.2	2
312	Crystallization, Mechanical, and Antimicrobial Properties of Diallyl Cyanuric Derivative-Grafted Polypropylene. ACS Omega, 2021, 6, 12794-12800.	3.5	2
313	Nanoelectronics Aiming at Cancer. Clinical Chemistry, 2015, 61, 664-665.	3.2	1
314	Co ₂ Reduction: Selective Etching of Nitrogenâ€Doped Carbon by Steam for Enhanced Electrochemical CO ₂ Reduction (Adv. Energy Mater. 22/2017). Advanced Energy Materials, 2017, 7, .	19.5	1
315	Electrocatalytic CO2 Reduction: 2D Assembly of Confined Space toward Enhanced CO2 Electroreduction (Adv. Energy Mater. 25/2018). Advanced Energy Materials, 2018, 8, 1870112.	19.5	1
316	Preparation and characterization of HY zeoliteâ€filled chitosan membranes for pervaporation separation. Journal of Applied Polymer Science, 2001, 79, 1144-1149.	2.6	1
317	CU(âį)-INDUCED CONFORMATION TRANSITION OF REGENERATED SILK FIBROIN IN AQUEOUS SOLUTIONS. Acta Polymerica Sinica, 2009, 009, 1056-1061.	0.0	1
318	The stability of silk fibroin nanoparticles coated with cationic polymers in biological media. Journal of Controlled Release, 2015, 213, e101.	9.9	0
319	Rücktitelbild: Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates (Angew. Chem. 29/2015). Angewandte Chemie, 2015, 127, 8686-8686.	2.0	0
320	Energy Storage: Achieving High Aqueous Energy Storage via Hydrogenâ€Generation Passivation (Adv.) Tj ETQq0 0	OfgBT /C)verlock 10 7

Znâ€Air Batteries: Eggâ€Derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts (Adv. Energy Mater. 20/2016). Advanced Energy Materials, 2016, 6, .