
John S Neal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599007/publications.pdf Version: 2024-02-01

ΙΟΗΝ S ΝΕΛΙ

#	Article	IF	CITATIONS
1	Comparative investigation of the performance of ZnO-based scintillators for use as α-particle detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 568, 803-809.	1.6	56
2	Portable fast-neutron radiography with the nuclear materials identification system for fissile material transfers. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 387-390.	1.4	47
3	Evaluation of Melt-Grown, ZnO Single Crystals for Use as Alpha-Particle Detectors. IEEE Transactions on Nuclear Science, 2008, 55, 1397-1403.	2.0	43
4	Development of Novel Polycrystalline Ceramic Scintillators. IEEE Transactions on Nuclear Science, 2008, 55, 1501-1508.	2.0	41
5	An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS). Nuclear Instruments & Methods in Physics Research B, 2005, 241, 835-838.	1.4	33
6	Effects of phonon coupling and free carriers on band-edge emission at room temperature in n-type ZnO crystals. Applied Physics Letters, 2006, 89, 251906.	3.3	33
7	Measurement of QuasielasticHe3(p→,ÂpN)Scattering from PolarizedHe3and the Three-Body Ground State Spin Structure. Physical Review Letters, 1995, 74, 502-505.	7.8	32
8	Evaluation of ZnO(Ga) coatings as alpha particle transducers within a neutron generator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505, 498-501.	1.6	32
9	Measurement of spin observables using a storage ring with polarized beam and polarized internal gas target. Physical Review Letters, 1993, 70, 738-741.	7.8	24
10	Investigation of ZnO-Based Polycrystalline Ceramic Scintillators for Use as \$alpha\$-Particle Detectors. IEEE Transactions on Nuclear Science, 2009, 56, 892-898.	2.0	23
11	Exploratory Research on the Development of Novel \${m Ce}^{3+}\$-Activated Phosphate Glass Scintillators. IEEE Transactions on Nuclear Science, 2008, 55, 3692-3702.	2.0	21
12	The characterization of scintillator performance at temperatures up to 400 degrees centigrade. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 709, 95-107.	1.6	20
13	Cerium Chlorideâ^'methanol Adduct Crystals, CeCl3(CH3OH)4: Preparation, Crystallography, And Scintillation Properties. Crystal Growth and Design, 2008, 8, 2070-2072.	3.0	19
14	The spin dependent momentum distributions of the neutron and proton in 3He. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 379, 67-72.	4.1	16
15	Divalent europium doped and un-doped calcium iodide scintillators: Scintillator characterization and single crystal growth. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 786, 23-31.	1.6	16
16	NMIS plus gamma spectroscopy for attributes of HEU, PU and HE detection. Nuclear Instruments & Methods in Physics Research B, 2004, 213, 378-384.	1.4	15
17	Predicting dose-time profiles of solar energetic particle events using Bayesian forecasting methods. IEEE Transactions on Nuclear Science, 2001, 48, 2004-2009.	2.0	13
18	Cerium-doped mixed-alkali rare-earth double-phosphate scintillators for thermal neutron detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579, 19-22.	1.6	13

John S Neal

#	Article	IF	CITATIONS
19	Analysis of the response of capture-gated organic scintillators. IEEE Transactions on Nuclear Science, 2005, 52, 3141-3146.	2.0	12
20	Single-crystal CeCl3(CH3OH)4: A new metal-organic cerium chloride methanol adduct for scintillator applications. Applied Physics Letters, 2008, 93, .	3.3	11
21	Fast coincidence counting with active inspection systems. Nuclear Instruments & Methods in Physics Research B, 2005, 241, 804-809.	1.4	10
22	The characterization of Eu2+-doped mixed alkaline-earth iodide scintillator crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 643, 75-78.	1.6	9
23	Multiple solar particle event dose time profile predictions using Bayesian inference. Radiation Protection Dosimetry, 2005, 116, 38-42.	0.8	8
24	A New Scintillator for Fast Neutron Detection: Single-Crystal \${m CeCl}_{3}({m CH}_{3}{m) Tj ETQq0 0 0 rgBT /	Overlock	10 ₈ Tf 50 542
25	Autonomous Control Capabilities for Space Reactor Power Systems. AIP Conference Proceedings, 2004, , .	0.4	6
26	New rare-earth-activated phosphate glass scintillators. Proceedings of SPIE, 2007, , .	0.8	6
27	Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors. Proceedings of SPIE, 2014, , .	0.8	6
28	A simple method for solar energetic particle event dose forecasting. Radiation Measurements, 2006, 41, 1136-1141.	1.4	5
29	Characterization of Green-Emitting Translucent Zinc Oxide Ceramics Prepared Via Spark Plasma Sintering. International Journal of Applied Ceramic Technology, 2011, 8, 725-733.	2.1	5
30	New cerium-based metal–organic scintillators for radiation detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 703, 138-144.	1.6	5
31	Prediction of solar particle event proton doses using early dose rate measurements. Acta Astronautica, 2005, 56, 961-968.	3.2	4
32	Cerium-doped mixed-alkali rare-earth double-phosphate scintillators for x- and gamma-ray detection. , 2006, , .		4
33	Importance of predicting the dose temporal profile for large solar energetic particle events. Space Weather, 2008, 6, .	3.7	4
34	The observation of scintillation in a hydrated inorganic compound: CeCl3·6H2O. Applied Physics Letters, 2013, 103, 141909.	3.3	4
35	Monte Carlo analysis of neutron detection with a BaF/sub 2/ scintillation detector. IEEE Transactions on Nuclear Science, 2004, 51, 1088-1090.	2.0	3
36	Dual-chamber/dual-anode proportional counter incorporating an intervening thin-foil solid neutron converter. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 693, 244-252.	1.6	3

	John S Ni	John S Neal		
#	Article	IF	CITATIONS	
37	Performance of new ceramic scintillators for gamma- and x-ray detection. Proceedings of SPIE, 2007, , .	0.8	2	