Pinarosa Avato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1599005/publications.pdf Version: 2024-02-01

PINIAPOSA AVATO

#	Article	IF	CITATIONS
1	Antimicrobial activity of saponins fromMedicago sp.: structure-activity relationship. Phytotherapy Research, 2006, 20, 454-457.	2.8	178
2	Allylsulfide constituents of garlic volatile oil as antimicrobial agents. Phytomedicine, 2000, 7, 239-243.	2.3	118
3	Brassicaceae: a rich source of health improving phytochemicals. Phytochemistry Reviews, 2015, 14, 1019-1033.	3.1	105
4	Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas. Plant Science, 2003, 165, 977-982.	1.7	98
5	Carvacrol: From Ancient Flavoring to Neuromodulatory Agent. Molecules, 2013, 18, 6161-6172.	1.7	94
6	Extracts from St John's wort and their antimicrobial activity. Phytotherapy Research, 2004, 18, 230-232.	2.8	80
7	Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L Plant Science, 2005, 169, 29-36.	1.7	80
8	Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochemistry Reviews, 2011, 10, 503-519.	3.1	79
9	Essential oils, genetic relationships and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. italicum from wild Mediterranean germplasm. Industrial Crops and Products, 2010, 32, 639-649.	2.5	72
10	Phytochemical analysis of a herbal tea from Artemisia annua L Journal of Pharmaceutical and Biomedical Analysis, 2012, 62, 79-86.	1.4	67
11	CYP72A67 Catalyzes a Key Oxidative Step in Medicago truncatula Hemolytic Saponin Biosynthesis. Molecular Plant, 2015, 8, 1493-1506.	3.9	67
12	A Survey on the Hypericum Genus: Secondary Metabolites and Bioactivity. Studies in Natural Products Chemistry, 2005, 30, 603-634.	0.8	66
13	Plant development and synthesis of essential oils in micropropagated and mycorrhiza inoculated plants of Origanum vulgare L. ssp. hirtum (Link) letswaart. Plant Cell, Tissue and Organ Culture, 2008, 93, 139-149.	1.2	64
14	Nematicidal potential of Brassicaceae. Phytochemistry Reviews, 2013, 12, 791-802.	3.1	59
15	Evaluation of nematicidal properties of saponins from Medicago spp European Journal of Plant Pathology, 2008, 120, 189-197.	0.8	55
16	Biosynthesis of saponins in the genus Medicago. Phytochemistry Reviews, 2011, 10, 459-469.	3.1	55
17	Bergamot Essential Oil Attenuates Anxiety-Like Behaviour in Rats. Molecules, 2017, 22, 614.	1.7	50
18	Nematicidal activity of essential oils from aromatic plants of Morocco. Journal of Pest Science, 2017, 90. 711-722.	1.9	49

#	Article	IF	CITATIONS
19	Antimicrobial Activity of Polyacetylenes fromBellis perennisand their Synthetic Derivatives. Planta Medica, 1997, 63, 503-507.	0.7	47
20	Triterpenoid Glycosides from Leaves ofMedicago arboreaL Journal of Agricultural and Food Chemistry, 2005, 53, 9954-9965.	2.4	47
21	Chemosystematics of surface lipids from maize and some related species. Phytochemistry, 1990, 29, 1571-1576.	1.4	45
22	Bioactive compounds from Capparis spinosa subsp. rupestris. Industrial Crops and Products, 2012, 36, 65-69.	2.5	42
23	Triterpenoid Glycosides from <i>Medicago sativa</i> as Antifungal Agents against <i>Pyricularia oryzae</i> . Journal of Agricultural and Food Chemistry, 2014, 62, 11030-11036.	2.4	42
24	Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. Journal of Food Composition and Analysis, 2018, 69, 197-204.	1.9	42
25	Glands, essential oils and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. microphyllum (Willd.) Nyman. Industrial Crops and Products, 2009, 29, 395-403.	2.5	41
26	New Triterpenic Saponins from the Aerial Parts of <i>Medicago arabica</i> (L.) Huds. Journal of Agricultural and Food Chemistry, 2009, 57, 2826-2835.	2.4	41
27	A Comparison of Headspace Solidâ€phase Microextraction and Classic Hydrodistillation for the Identification of Volatile Constituents from <i>Thapsia</i> spp. Provides Insights into Guaianolide Biosynthesis in Apiaceae. Phytochemical Analysis, 2012, 23, 44-51.	1.2	38
28	Epicuticular waxes of two sorghum varieties. Phytochemistry, 1978, 17, 999-1001.	1.4	37
29	Aliphatic and cyclic lipid components of Sorghum plant organs. Phytochemistry, 1990, 29, 1073-1078.	1.4	36
30	Nematotoxic activity of essential oils from Monarda species. Journal of Pest Science, 2018, 91, 1115-1125.	1.9	36
31	Triterpenoid Glycosides from the Leaves of Two Cultivars of Medicago polymorpha L Journal of Agricultural and Food Chemistry, 2011, 59, 6142-6149.	2.4	34
32	Biocide plants as a sustainable tool for the control of pests and pathogens in vegetable cropping systems. Italian Journal of Agronomy, 2014, 9, 137.	0.4	34
33	Essential oils as soil biofumigants for the control of the root-knot nematode <i>Meloidogyne incognita</i> on tomato. Annals of Applied Biology, 2015, 167, 217-224.	1.3	33
34	Chemical and Biological Activity of Triterpene Saponins from Medicago Species. Natural Product Communications, 2006, 1, 1934578X0600101.	0.2	32
35	Epicuticular waxes of Sorghum and some compositional changes with plant age. Phytochemistry, 1984, 23, 2843-2846.	1.4	31
36	Nematicidal potential of Artemisia annua and its main metabolites. European Journal of Plant Pathology, 2013, 137, 295-304.	0.8	31

#	Article	IF	CITATIONS
37	Glossy mutants of maize. Heredity, 1979, 42, 391-395.	1.2	29
38	Determination of Major Constituents in St. John's Wort Under Different Extraction Conditions. Pharmaceutical Biology, 2004, 42, 83-89.	1.3	29
39	Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats. Toxicology and Applied Pharmacology, 2011, 255, 169-175.	1.3	29
40	Phytochemical and Biological Profile of Moricandia arvensis (L.) DC.: An Inhibitor of Pancreatic Lipase. Molecules, 2018, 23, 2829.	1.7	29
41	Seed oil composition of Paullinia cupana var. sorbilis (Mart.) Ducke. Lipids, 2003, 38, 773-780.	0.7	28
42	Chemical Profile, Antioxidant and Antibacterial Activities of Achillea moschata Wulfen, an Endemic Species from the Alps. Molecules, 2016, 21, 830.	1.7	28
43	Acetylenes and terpenoids of Bellis perennis. Phytochemistry, 1995, 40, 141-147.	1.4	27
44	Glossy mutants of maize. VIII. Accumulation of fatty aldehydes in surface waxes of gl5 maize seedlings. Biochemical Genetics, 1978, 16, 1015-1021.	0.8	26
45	Cell death induction and nitric oxide biosynthesis in white poplar (<i>Populus alba</i>) suspension cultures exposed to alfalfa saponins. Physiologia Plantarum, 2011, 141, 227-238.	2.6	26
46	Artefact formation during acid hydrolysis of saponins from Medicago spp Phytochemistry, 2017, 138, 116-127.	1.4	26
47	Activity of Saponins from Medicago Species against Phytoparasitic Nematodes. Plants, 2020, 9, 443.	1.6	26
48	Essential oils ofVarthemia iphionoides from Jordan. Flavour and Fragrance Journal, 2004, 19, 559-561.	1.2	24
49	Activity of Saponins from Medicago species Against HeLa and MCF-7 Cell Lines and their Capacity to Potentiate Cisplatin Effect. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1508-1518.	0.9	24
50	The genus Thapsia as a source of petroselinic acid. Lipids, 2001, 36, 845-850.	0.7	23
51	New Proazulene Guaianolides from Thapsia villosa. Journal of Natural Products, 1990, 53, 1479-1484.	1.5	22
52	Nematicidal potential of materials from Medicago spp European Journal of Plant Pathology, 2009, 125, 39-49.	0.8	22
53	Glucosinolates Profile of "Mugnoloâ€, a Variety of <i>Brassica oleracea</i> L. Native to Southern Italy (Salento). Planta Medica, 2011, 77, 287-292.	0.7	21
54	Essential oils from fruits of three types of Thapsia villosa. Phytochemistry, 1996, 43, 609-612.	1.4	20

#	Article	IF	CITATIONS
55	Chemotaxonomy ofThapsia maximaMiller. Constituents of the Essential Oil of the Fruits. Journal of Essential Oil Research, 1992, 4, 467-473.	1.3	19
56	Cholertic activity ofThapsia chem I, II, and III in rats: Comparison with terpenoid constituents and peppermint oil. Phytotherapy Research, 1994, 8, 305-307.	2.8	19
57	Synthesis of epicuticular primary alcohols and intracellular fatty acids by tissue slices fromcer-j 59 barley leaves. Carlsberg Research Communications, 1982, 47, 377-390.	1.7	18
58	Localization of the Acyl Groups in Proazulene Guaianolides from Thapsia transtagana and Thapsia garganica. Journal of Natural Products, 1993, 56, 411-415.	1.5	18
59	Essential oil composition ofMentha xpiperita L. from different environments of north India. Flavour and Fragrance Journal, 1999, 14, 5-8.	1.2	18
60	A Piperitenone Oxide Chemotype of Mentha longifolia (L.) Huds. Growing Wild in Jordan. Journal of Essential Oil Research, 2000, 12, 530-532.	1.3	17
61	Relationship between Chemical Composition and Nematicidal Activity of Different Essential Oils. Plants, 2020, 9, 1546.	1.6	16
62	Absence of long chain aldehydes in the wax of the Glossy II mutant of maize. Phytochemistry, 1985, 24, 1995-1997.	1.4	15
63	Epicuticular waxes of maize as affected by the interaction of mutantgl8 withgl3, gl4 andgl15. Lipids, 1987, 22, 11-16.	0.7	14
64	Essential Oil ofThapsia garganica. Planta Medica, 1991, 57, 585-586.	0.7	14
65	Unraveling the response of plant cells to cytotoxic saponins. Plant Signaling and Behavior, 2011, 6, 516-519.	1.2	14
66	Effect of inhibitors on synthesis of fatty acyl chains present in waxes on developing maize leaves. Carlsberg Research Communications, 1980, 45, 329-347.	1.7	13
67	Composition of the Essential Oils of Fruits from Polyploid Types of <i>Thapsia villosa</i> L.: Chemotaxonomic Evaluation. Journal of Essential Oil Research, 1996, 8, 123-128.	1.3	13
68	Artemisia annua compounds have potential to manage root-knot and potato cyst nematodes. Industrial Crops and Products, 2017, 108, 195-200.	2.5	13
69	Lobularia maritima (L.) Desv. Aerial Parts Methanolic Extract: In Vitro Screening of Biological Activity. Plants, 2020, 9, 89.	1.6	13
70	Chemical Composition and Nematicidal Properties of Sixteen Essential Oils—A Review. Plants, 2021, 10, 1368.	1.6	13
71	Rare fatty acids and lipids in plant oilseeds: occurrence and bioactivity. Phytochemistry Reviews, 2022, 21, 401-428.	3.1	13
72	Chemical Identification of Specialized Metabolites from Sulla (Hedysarum coronarium L.) Collected in Southern Italy. Molecules, 2021, 26, 4606.	1.7	12

#	Article	IF	CITATIONS
73	Essential Oils from the Roots ofThapsia garganicaL Journal of Essential Oil Research, 2002, 14, 20-22.	1.3	11
74	Cyanolipid-rich seed oils from Allophylus natalensis and A. dregeanus. Lipids, 2005, 40, 1051-1056.	0.7	11
75	Polyphenol content and bioactivity of <i>Achillea moschata</i> from the Italian and Swiss Alps. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2020, 75, 57-64.	0.6	11
76	Effect of Trichloroacetic Acid on Wax Composition of Normal and Mutant Maize (Zea mays L.). Journal of Experimental Botany, 1984, 35, 245-251.	2.4	10
77	Composition of the Essential Oils from the Roots of <i>Thapsia maxima</i> Miller and <i>T. villosa</i> L Journal of Essential Oil Research, 2000, 12, 303-309.	1.3	10
78	Phytochemical analysis of <i>Passiflora loefgrenii</i> Vitta, a rich source of luteolin-derived flavonoids with antioxidant properties. Journal of Pharmacy and Pharmacology, 2015, 67, 1603-1612.	1.2	10
79	Cell wall integrity, genotoxic injury and PCD dynamics in alfalfa saponin-treated white poplar cells highlight a complex link between molecule structure and activity. Phytochemistry, 2015, 111, 114-123.	1.4	10
80	Epicuticular waxes of albino maize. Phytochemistry, 1982, 21, 129-131.	1.4	9
81	Quality Assessment of Commercial Spagyric Tinctures of Harpagophytum procumbens and Their Antioxidant Properties. Molecules, 2019, 24, 2251.	1.7	9
82	Triterpenic saponins from Medicago marina L. Phytochemistry, 2020, 174, 112333.	1.4	9
83	Phytochemical and biological characterization of dry outer scales extract from Tropea red onion (Allium cepa L. var. Tropea)–A promising inhibitor of pancreatic lipase. Phytomedicine Plus, 2022, 2, 100235.	0.9	9
84	Characterization of Chromosomes and Genome Organization of Thapsia Garganica L. by Localizations of rRNA Genes using Fluorescent in Situ Hybridization. Hereditas, 2004, 129, 231-239.	0.5	8
85	Inhibitory Effect on Lipid Absorption and Variability of Chemical Constituents from <i>Capparis sicula</i> subsp. <i>sicula</i> and <i>Capparis orientalis</i> . Chemistry and Biodiversity, 2016, 13, 755-761.	1.0	8
86	Identification of the Volatile Components of Galium verum L. and Cruciata leavipes Opiz from the Western Italian Alps. Molecules, 2020, 25, 2333.	1.7	8
87	White Poplar (Populus alba L.) Suspension Cultures as a Model System to Study Apoptosis Induced by Alfalfa Saponins. Anti-Cancer Agents in Medicinal Chemistry, 2014, 14, 1324-1331.	0.9	8
88	Biologically active compounds from forage plants. Phytochemistry Reviews, 2022, 21, 471-501.	3.1	8
89	Nematicidal activity of Echinacea species on the root-knot nematode Meloidogyne incognita. Journal of Pest Science, 2020, 93, 1397-1410.	1.9	7
90	Editorial to the Special Issue–"Natural Products and Drug Discovery― Molecules, 2020, 25, 1128.	1.7	7

#	Article	IF	CITATIONS
91	Nematicidal Activity of Essential Oil from Lavandin (Lavandula × intermedia Emeric ex Loisel.) as Related to Chemical Profile. Molecules, 2021, 26, 6448.	1.7	7
92	Analysis of Cyanolipids from Sapindaceae Seed Oils by Gas Chromatography–Elâ€Mass Spectrometry. Lipids, 2014, 49, 335-345.	0.7	6
93	Synthesis of wax esters by a cell-free system from barley (Hordeum vulgare L.). Planta, 1984, 162, 487-494.	1.6	5
94	CGC-MS determination of mixtures of long chain aliphatic esters. Journal of High Resolution Chromatography, 1987, 10, 594-597.	2.0	5
95	Nematicidal potential of Taraxacum officinale. Environmental Science and Pollution Research, 2018, 25, 30056-30065.	2.7	4
96	Ontogenetic Variations in the Chemical Composition of Maize Surface Lipids. , 1987, , 549-551.		4
97	Effect of Thapsia Essential Oils on Bile Composition in Rats. Pharmaceutical Biology, 1998, 36, 335-340.	1.3	3
98	Characterization of Seed Oil Components from Nephelium Lappaceum L. Natural Product Communications, 2006, 1, 1934578X0600100.	0.2	3
99	Plant biodiversity: phytochemicals and health. Phytochemistry Reviews, 2018, 17, 645-656.	3.1	3
100	GLANDULAR HAIRS AND ESSENTIAL OILS IN MICROPROPAGATED PLANTS OF ORIGANUM VULGARE L Acta Horticulturae, 2006, , 293-296.	0.1	2
101	Compositional Analysis of Lavandula pinnata Essential Oils. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	1
102	Editorial to the special issue: "Phytochemicals in nutrition and health: advances and challenges― Phytochemistry Reviews, 2022, , 1-4.	3.1	1
103	Epicuticular Waxes of Zea Mays ssp. Mays and Related Species. , 1989, , 275-276.		Ο