
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1598949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isatin-derived Antibacterial and Antifungal Compounds and their Transition Metal Complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 417-423.	2.5	210
2	Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opinion on Therapeutic Patents, 2017, 27, 63-79.	2.4	208
3	Biscoumarin: new class of urease inhibitors; economical synthesis and activity. Bioorganic and Medicinal Chemistry, 2004, 12, 1963-1968.	1.4	201
4	Structure–activity relationships of tyrosinase inhibitory combinatorial library of 2,5-disubstituted-1,3,4-oxadiazole analogues. Bioorganic and Medicinal Chemistry, 2005, 13, 3385-3395.	1.4	168
5	Quinazoline and quinazolinone as important medicinal scaffolds: a comparative patent review (2011–2016). Expert Opinion on Therapeutic Patents, 2018, 28, 281-297.	2.4	165
6	Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. European Journal of Medicinal Chemistry, 2015, 92, 387-400.	2.6	155
7	Isatin based Schiff bases as inhibitors of α-glucosidase: Synthesis, characterization, in vitro evaluation and molecular docking studies. Bioorganic Chemistry, 2015, 60, 42-48.	2.0	147
8	Synthesis of bis-Schiff bases of isatins and their antiglycation activity. Bioorganic and Medicinal Chemistry, 2009, 17, 7795-7801.	1.4	134
9	<i>In-vitro</i> antibacterial, antifungal and cytotoxic properties of sulfonamide—derived Schiff's bases and their metal complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 183-188.	2.5	133
10	Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. European Journal of Medicinal Chemistry, 2014, 81, 245-252.	2.6	128
11	Triazinoindole analogs as potent inhibitors of α-glucosidase: Synthesis, biological evaluation and molecular docking studies. Bioorganic Chemistry, 2015, 58, 81-87.	2.0	126
12	N-Alkylation of anilines, carboxamides and several nitrogen heterocycles using CsF–Celite/alkyl halides/CH3CN combination. Tetrahedron, 2001, 57, 9951-9957.	1.0	118
13	Multicomponent reactions (MCR) in medicinal chemistry: a patent review (2010-2020). Expert Opinion on Therapeutic Patents, 2021, 31, 267-289.	2.4	115
14	Synthesis, molecular docking, acetylcholinesterase and butyrylcholinesterase inhibitory potential of thiazole analogs as new inhibitors for Alzheimer disease. Bioorganic Chemistry, 2015, 62, 106-116.	2.0	114
15	Synthesis, in vitro evaluation and molecular docking studies of thiazole derivatives as new inhibitors of α-glucosidase. Bioorganic Chemistry, 2015, 62, 15-21.	2.0	109
16	3-Formylchromones: Potential antiinflammatory agents. European Journal of Medicinal Chemistry, 2010, 45, 4058-4064.	2.6	103
17	Tetraketones: A new class of tyrosinase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 344-351.	1.4	99
18	Synthesis and inÂvitro urease inhibitory activity of N,N′-disubstituted thioureas. European Journal of Medicinal Chemistry, 2014, 74, 314-323.	2.6	98

#	Article	IF	CITATIONS
19	A novel method for the syntheses of symmetrical disulfides using CsF–Celite as a solid base. Tetrahedron Letters, 2003, 44, 6789-6791.	0.7	94
20	Oxazolones: New tyrosinase inhibitors; synthesis and their structure–activity relationships. Bioorganic and Medicinal Chemistry, 2006, 14, 6027-6033.	1.4	93
21	Schiff bases of 3-formylchromone as thymidine phosphorylase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 2983-2988.	1.4	93
22	Microwave–metal interaction pyrolysis of polystyrene. Journal of Analytical and Applied Pyrolysis, 2010, 89, 39-43.	2.6	93
23	Synthesis of novel inhibitors of β-glucuronidase based on benzothiazole skeleton and study of their binding affinity by molecular docking. Bioorganic and Medicinal Chemistry, 2011, 19, 4286-4294.	1.4	91
24	Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 2018, 77, 586-592.	2.0	88
25	Synthesis of 4-thiazolidinone analogs as potent in vitro anti-urease agents. Bioorganic Chemistry, 2015, 63, 123-131.	2.0	85
26	Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. Bioorganic Chemistry, 2016, 68, 30-40.	2.0	82
27	Synthesis of antibacterial and antifungal cobalt(II), copper(II), nickel(II) and zinc(II) complexes with bis-(1,1′-disubstituted ferrocenyl)thiocarbohydrazone and bis-(1,1′-disubstituted) Tj ETQq1 1 0.784314 rg	3T 10 verlo	ck მ Tf 50 4
28	Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 2017, 74, 179-186.	2.0	80
29	Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3285-3289.	1.0	79
30	Synthesis of diethyl 4-substituted-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylates as a new series of inhibitors against yeast α-glucosidase. European Journal of Medicinal Chemistry, 2015, 95, 199-209.	2.6	78
31	Syntheses of new 3-thiazolyl coumarin derivatives, inÂvitro α -glucosidase inhibitory activity, and molecular modeling studies. European Journal of Medicinal Chemistry, 2016, 122, 196-204.	2.6	78
32	Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors inÂvitro: Structure-activity relationship, molecular docking, and kinetic studies. European Journal of Medicinal Chemistry, 2019, 183, 111677.	2.6	78
33	Synthesis of Coumarin Derivatives with Cytotoxic, Antibacterial and Antifungal Activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 373-379.	2.5	75
34	5-Bromo-2-aryl benzimidazole derivatives as non-cytotoxic potential dual inhibitors of α -glucosidase and urease enzymes. Bioorganic Chemistry, 2017, 72, 21-31.	2.0	75
35	Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 2017, 74, 1-9.	2.0	75
36	Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic Chemistry, 2017, 74, 30-40.	2.0	72

#	Article	IF	CITATIONS
37	In vitro cytotoxic, antibacterial, antifungal and urease inhibitory activities of some <i>N</i> ⁴ - substituted isatin-3-thiosemicarbazones. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, 23, 848-854.	2.5	71
38	Synthesis, molecular docking and α-glucosidase inhibition of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles. Bioorganic Chemistry, 2016, 66, 117-123.	2.0	71
39	The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel Processing Technology, 2012, 94, 145-150.	3.7	70
40	Synthesis of Novel Bisindolylmethane Schiff bases and Their Antibacterial Activity. Molecules, 2014, 19, 11722-11740.	1.7	70
41	New Hybrid Hydrazinyl Thiazole Substituted Chromones: As Potential α-Amylase Inhibitors and Radical (DPPH & ABTS) Scavengers. Scientific Reports, 2017, 7, 16980.	1.6	70
42	Synthesis of novel derivatives of 4-methylbenzimidazole and evaluation of their biological activities. European Journal of Medicinal Chemistry, 2014, 84, 731-738.	2.6	69
43	Synthesis of new oxadiazole derivatives as α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 4155-4162.	1.4	67
44	Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 2015, 24, 1310-1324.	1.1	66
45	Synthesis, Î ² -glucuronidase inhibition and molecular docking studies of hybrid bisindole-thiosemicarbazides analogs. Bioorganic Chemistry, 2016, 68, 56-63.	2.0	66
46	Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors. Bioorganic Chemistry, 2015, 61, 51-57.	2.0	65
47	Hydrazinyl arylthiazole based pyridine scaffolds: Synthesis, structural characterization, inÂvitro α-glucosidase inhibitory activity, and in silico studies. European Journal of Medicinal Chemistry, 2017, 138, 255-272.	2.6	65
48	Synthesis, in vitro α-glucosidase inhibitory potential and molecular docking study of thiadiazole analogs. Bioorganic Chemistry, 2018, 78, 201-209.	2.0	65
49	An alternative approach towards the syntheses of thioethers and thioesters using CsF–Celite in acetonitrile. Tetrahedron Letters, 2002, 43, 8281-8283.	0.7	63
50	Synthesis, <i>In vitro</i> and Docking Studies of New Flavone Ethers as <i>α</i> â€Glucosidase Inhibitors. Chemical Biology and Drug Design, 2016, 87, 361-373.	1.5	63
51	Synthesis and anti-HIV activity of new chiral 1,2,4-triazoles and 1,3,4-thiadiazoles. Heteroatom Chemistry, 2007, 18, 316-322.	0.4	62
52	Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones. Bioorganic and Medicinal Chemistry, 2014, 22, 3449-3454.	1.4	61
53	Novel 2,5-disubtituted-1,3,4-oxadiazoles with benzimidazole backbone: A new class of β-glucuronidase inhibitors and in silico studies. Bioorganic and Medicinal Chemistry, 2015, 23, 3119-3125.	1.4	60
54	Design, synthesis, and urease inhibition studies of some 1,3,4-oxadiazoles and 1,2,4-triazoles derived from mandelic acid. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 572-576.	2.5	59

#	Article	IF	CITATIONS
55	Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2018, 26, 152-160.	1.4	59
56	Palladium-Catalyzed Regioselective Benzylation–Annulation of Pyridine <i>N</i> -Oxides with Toluene Derivatives via Multiple C–H Bond Activations: Benzylation versus Arylation. Organic Letters, 2015, 17, 414-417.	2.4	56
57	Co-liquefaction of Makarwal coal and waste polystyrene by microwave–metal interaction pyrolysis in copper coil reactor. Journal of Analytical and Applied Pyrolysis, 2011, 90, 53-55.	2.6	53
58	Synthesis, biological evaluation, and docking studies of novel thiourea derivatives of bisindolylmethane as carbonic anhydrase II inhibitor. Bioorganic Chemistry, 2015, 62, 83-93.	2.0	53
59	Oxindole based oxadiazole hybrid analogs: Novel α -glucosidase inhibitors. Bioorganic Chemistry, 2018, 76, 273-280.	2.0	53
60	Oxadiazoles and thiadiazoles: Novel α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 5454-5465.	1.4	52
61	Chemistry, Urease Inhibition, and Phytotoxic Studies of Binuclear Vanadium(IV) Complexes. Chemistry and Biodiversity, 2007, 4, 58-71.	1.0	51
62	Synthesis and biological evaluation of some new N ⁴ -substituted isatin-3-thiosemicarbazones. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 437-446.	2.5	51
63	Discovery of novel oxindole derivatives as potent α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 3441-3448.	1.4	51
64	2-Arylquinazolin-4(3H)-ones: A new class of α-glucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 7417-7421.	1.4	51
65	Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorganic Chemistry, 2020, 94, 103394.	2.0	51
66	Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorganic Chemistry, 2020, 94, 103195.	2.0	51
67	1,3,4-Oxadiazole-2(3H)-thione and its analogues: A new class of non-competitive nucleotide pyrophosphatases/phosphodiesterases 1 inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 7816-7822.	1.4	49
68	2-(2′-Pyridyl) benzimidazole derivatives and their urease inhibitory activity. Medicinal Chemistry Research, 2014, 23, 4447-4454.	1.1	49
69	Synthesis of Bis-indolylmethane sulfonohydrazides derivatives as potent α-Glucosidase inhibitors. Bioorganic Chemistry, 2018, 80, 112-120.	2.0	49
70	2ʹ-Aryl and 4ʹ-arylidene substituted pyrazolones: As potential α-amylase inhibitors. European Journal of Medicinal Chemistry, 2018, 159, 47-58.	2.6	48
71	New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorganic Chemistry, 2018, 81, 253-263.	2.0	48
72	Evaluation of bisindole as potent β-glucuronidase inhibitors: Synthesis and in silico based studies. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 1825-1829.	1.0	47

#	Article	IF	CITATIONS
73	Synthesis, α-glucosidase inhibitory, cytotoxicity and docking studies of 2-aryl-7-methylbenzimidazoles. Bioorganic Chemistry, 2016, 65, 100-109.	2.0	47
74	Dihydropyrano [2,3-c] pyrazole: Novel in vitro inhibitors of yeast α-glucosidase. Bioorganic Chemistry, 2016, 65, 61-72.	2.0	47
75	2-Aryl benzimidazoles: Synthesis, InÂvitro α-amylase inhibitory activity, and molecular docking study. European Journal of Medicinal Chemistry, 2018, 150, 248-260.	2.6	47
76	Synthesis of 2-methoxybenzoylhydrazone and evaluation of their antileishmanial activity. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3463-3466.	1.0	46
77	Unsymmetrically disubstituted urea derivatives: A potent class of antiglycating agents. Bioorganic and Medicinal Chemistry, 2009, 17, 2447-2451.	1.4	45
78	Molecular modeling-based antioxidant arylidene barbiturates as urease inhibitors. Journal of Molecular Graphics and Modelling, 2011, 30, 153-156.	1.3	45
79	Synthesis of 6-chloro-2-Aryl-1H-imidazo[4,5-b]pyridine derivatives: Antidiabetic, antioxidant, β-glucuronidase inhibiton and their molecular docking studies. Bioorganic Chemistry, 2016, 65, 48-56.	2.0	45
80	Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorganic and Medicinal Chemistry, 2019, 27, 4081-4088.	1.4	45
81	Cesium fluoride-Celite: a solid base for efficient syntheses of aromatic esters and ethers. Tetrahedron, 2005, 61, 6652-6656.	1.0	43
82	Syntheses, Urease Inhibition, and Antimicrobial Studies of Some Chiral 3-Substituted-4-amino-5-thioxo-1H,4H-1,2,4-triazoles. Medicinal Chemistry, 2008, 4, 539-543.	0.7	43
83	Isolation and immunomodulatory properties of a flavonoid, casticin from <i>Vitex agnusâ€castus</i> . Phytotherapy Research, 2009, 23, 1516-1520.	2.8	43
84	Synthesis and structure–activity relationship of thiobarbituric acid derivatives as potent inhibitors of urease. Bioorganic and Medicinal Chemistry, 2014, 22, 4119-4123.	1.4	43
85	Synthesis and inhibitory potential towards acetylcholinesterase, butyrylcholinesterase and lipoxygenase of some variably substituted chalcones. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 41-47.	2.5	42
86	Synthesis, Spectroscopy, and Biological Properties of Vanadium(IV)–Hydrazide Complexes. Chemistry and Biodiversity, 2008, 5, 82-92.	1.0	42
87	Identification of potent urease inhibitors via ligand- and structure-based virtual screening and in vitro assays. Journal of Molecular Graphics and Modelling, 2010, 28, 792-798.	1.3	42
88	Synthesis of novel benzohydrazone–oxadiazole hybrids as β-glucuronidase inhibitors and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2015, 23, 7394-7404.	1.4	42
89	Dihydropyridines as potential α-amylase and α-glucosidase inhibitors: Synthesis, in vitro and in silico studies. Bioorganic Chemistry, 2020, 96, 103581.	2.0	42
90	Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies. Bioorganic and Medicinal Chemistry, 2020, 28, 115467.	1.4	42

#	Article	IF	CITATIONS
91	5-Acetyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1 H)-ones: As potent urease inhibitors; synthesis, in vitro screening, and molecular modeling study. Bioorganic Chemistry, 2018, 76, 37-52.	2.0	41
92	Indole acrylonitriles as potential anti-hyperglycemic agents: Synthesis, $\hat{I}\pm$ -glucosidase inhibitory activity and molecular docking studies. Bioorganic and Medicinal Chemistry, 2020, 28, 115605.	1.4	41
93	Expeditious Method for Synthesis of Symmetrical 1,3â€Disubstituted Ureas and Thioureas. Synthetic Communications, 2005, 35, 1663-1674.	1.1	40
94	Synthesis and evaluation of unsymmetrical heterocyclic thioureas as potent β-glucuronidase inhibitors. Medicinal Chemistry Research, 2015, 24, 3166-3173.	1.1	40
95	Phenoxyacetohydrazide Schiff Bases: β-Clucuronidase Inhibitors. Molecules, 2014, 19, 8788-8802.	1.7	39
96	Synthesis of triazole Schiff bases: Novel inhibitors of nucleotide pyrophosphatase/phosphodiesterase-1. Bioorganic and Medicinal Chemistry, 2014, 22, 6509-6514.	1.4	39
97	Dihydropyrimidones: As novel class of β-glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3624-3635.	1.4	39
98	Chalcones and bis-chalcones: As potential α-amylase inhibitors; synthesis, in vitro screening, and molecular modelling studies. Bioorganic Chemistry, 2018, 79, 179-189.	2.0	39
99	Synthesis of azachalcones, their α-amylase, α-glucosidase inhibitory activities, kinetics, and molecular docking studies. Bioorganic Chemistry, 2021, 106, 104489.	2.0	39
100	An improved method for the synthesis of γ-lactones using sodium bromate and sodium hydrogen sulfite. Tetrahedron Letters, 2001, 42, 1647-1649.	0.7	38
101	Organotin(IV) Complexes of Aniline Derivatives. I. Synthesis, Spectral and Antibacterial Studies of Di― and Triorganotin(IV) Derivatives of 4â€Bromomaleanilic Acid. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2003, 33, 1221-1235.	1.8	38
102	Synthesis, Crystal Structure, DFT Studies and Evaluation of the Antioxidant Activity of 3,4-Dimethoxybenzenamine Schiff Bases. Molecules, 2014, 19, 8414-8433.	1.7	38
103	Flurbiprofen derivatives as novel α-amylase inhibitors: Biology-oriented drug synthesis (BIODS), in vitro, and in silico evaluation. Bioorganic Chemistry, 2018, 81, 157-167.	2.0	38
104	2,4,6-Trichlorophenylhydrazine Schiff Bases as DPPH Radical and Super Oxide Anion Scavengers. Medicinal Chemistry, 2012, 8, 452-461.	0.7	38
105	Synthesis of Benzophenonehydrazone Schiff Bases and their In Vitro Antiglycating Activities. Medicinal Chemistry, 2013, 9, 588-595.	0.7	38
106	Evaluation of 2-indolcarbohydrazones as potent α-glucosidase inhibitors, in silico studies and DFT based stereochemical predictions. Bioorganic Chemistry, 2015, 63, 24-35.	2.0	37
107	Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of new thiazole derivatives. Bioorganic Chemistry, 2016, 68, 245-258.	2.0	37
108	Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: In silico validation and SAR studies. Bioorganic Chemistry, 2017, 71, 192-200.	2.0	37

#	Article	IF	CITATIONS
109	Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. European Journal of Medicinal Chemistry, 2017, 141, 530-537.	2.6	37
110	New Hybrid Scaffolds based on Hydrazinyl Thiazole Substituted Coumarin; As Novel Leads of Dual Potential; In Vitro α-Amylase Inhibitory and Antioxidant (DPPH and ABTS Radical Scavenging) Activities. Medicinal Chemistry, 2019, 15, 87-101.	0.7	37
111	Synthesis, characterization, and biological studies of tri- and diorganotin(IV) complexes with 2?,4?-difluoro-4-hydroxy-[1,1?]-biphenyle-3-carbolic acid: Crystal structure of [(CH3)3Sn(C13H7O3F2)]. Heteroatom Chemistry, 2002, 13, 638-649.	0.4	36
112	Acylhydrazide Schiff Bases: DPPH Radical and Superoxide Anion Scavengers. Medicinal Chemistry, 2012, 8, 705-710.	0.7	36
113	Dihydropyrimidine based hydrazine dihydrochloride derivatives as potent urease inhibitors. Bioorganic Chemistry, 2016, 64, 85-96.	2.0	35
114	Oxindole Derivatives: Synthesis and Antiglycation Activity. Medicinal Chemistry, 2013, 9, 681-688.	0.7	35
115	Synthesis and molecular modelling studies of phenyl linked oxadiazole-phenylhydrazone hybrids as potent antileishmanial agents. European Journal of Medicinal Chemistry, 2017, 126, 1021-1033.	2.6	34
116	Novel acridine-based thiosemicarbazones as â€~turn-on' chemosensors for selective recognition of fluoride anion: a spectroscopic and theoretical study. Royal Society Open Science, 2018, 5, 180646.	1.1	34
117	Synthesis, structure-activity relationship and molecular docking studies of 3-O-flavonol glycosides as cholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2018, 26, 3696-3706.	1.4	34
118	Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new N-sulfonohydrazide substituted indazoles. Bioorganic Chemistry, 2020, 94, 103410.	2.0	34
119	Structure-based design, synthesis and biological evaluation of β-glucuronidase inhibitors. Journal of Computer-Aided Molecular Design, 2014, 28, 577-585.	1.3	33
120	Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorganic Chemistry, 2018, 78, 58-67.	2.0	33
121	Synthesis of 2,4,6-Trichlorophenyl Hydrazones and their Inhibitory Potential Against Clycation of Protein. Medicinal Chemistry, 2011, 7, 572-580.	0.7	33
122	Selective cleavage of t-butyldiphenylsilyl ethers in the presence of t-butyldimethylsilyl ethers Tetrahedron Letters, 1990, 31, 1669-1670.	0.7	32
123	Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorganic Chemistry, 2020, 95, 103555.	2.0	32
124	Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study. Bioorganic Chemistry, 2021, 108, 104638.	2.0	32
125	.BETAN-Cyanoethyl Acyl Hydrazide Derivatives: A New Class of .BETAGlucuronidase Inhibitors Chemical and Pharmaceutical Bulletin, 2002, 50, 1443-1446.	0.6	31
126	An efficient approach towards syntheses of ethers and esters using CsF–Celite as a solid base. Tetrahedron Letters, 2002, 43, 8603-8606.	0.7	31

#	Article	IF	CITATIONS
127	Syntheses, in vitro evaluation and molecular docking studies of 5-bromo-2-aryl benzimidazoles as α-glucosidase inhibitors. Medicinal Chemistry Research, 2016, 25, 2058-2069.	1.1	31
128	Copper-catalyzed cross-dehydrogenative coupling of pyridine N-oxides with cyclic ethers. Journal of Organometallic Chemistry, 2016, 801, 10-13.	0.8	31
129	Synthesis, In vitro α-Glucosidase Inhibitory Potential and Molecular Docking Studies of 2-Amino-1,3,4-Oxadiazole Derivatives. Medicinal Chemistry, 2020, 16, 724-734.	0.7	31
130	An expedient esterification of aromatic carboxylic acids using sodium bromate and sodium hydrogen sulfite. Tetrahedron, 2003, 59, 5549-5554.	1.0	30
131	A patent update on therapeutic applications of urease inhibitors (2012–2018). Expert Opinion on Therapeutic Patents, 2019, 29, 181-189.	2.4	30
132	Synthesis, structure–activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors. Bioorganic and Medicinal Chemistry, 2017, 25, 100-106.	1.4	29
133	Synthesis and screening of (E)-3-(2-benzylidenehydrazinyl)-5,6-diphenyl-1,2,4-triazine analogs as novel dual inhibitors of α-amylase and α-glucosidase. Bioorganic Chemistry, 2020, 101, 103979.	2.0	29
134	Design, synthesis, and urease inhibition studies of a series of 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones. Monatshefte Für Chemie, 2010, 141, 479-484.	0.9	28
135	Synthesis of 3-ferrocenylaniline: DNA interaction, antibacterial, and antifungal activity. Medicinal Chemistry Research, 2013, 22, 3154-3159.	1.1	28
136	Pd-catalyzed dehydrogenative cross-coupling of pyridine-N-oxides with uracils. RSC Advances, 2014, 4, 13764.	1.7	28
137	The immunomodulation potential of the synthetic derivatives of benzothiazoles: Implications in immune system disorders through in vitro and in silico studies. Bioorganic Chemistry, 2016, 64, 21-28.	2.0	28
138	Synthetic nicotinic/isonicotinic thiosemicarbazides: In vitro urease inhibitory activities and molecular docking studies. Bioorganic Chemistry, 2018, 79, 34-45.	2.0	28
139	Synthesis, and In Vitro and In Silico α-Glucosidase Inhibitory Studies of 5-Chloro-2-Aryl Benzo[d]thiazoles. Bioorganic Chemistry, 2018, 78, 269-279.	2.0	28
140	Urease and α-Chymotrypsin Inhibitory Effects of Selected Urea Derivatives. Letters in Drug Design and Discovery, 2008, 5, 401-405.	0.4	28
141	A facile and improved synthesis of sildenafil (Viagraï;½) analogs through solid support microwave irradiation possessing tyrosinase inhibitory potential, their conformational analysis and molecular dynamics simulation studies. Molecular Diversity, 2005, 9, 15-26.	2.1	27
142	Synthesis and anti-inflammatory activity of some selected aminothiophene analogs. Journal of Enzyme Inhibition and Medicinal Chemistry, 2006, 21, 139-143.	2.5	27
143	Evaluation of Silica-H2SO4 as an Efficient Heterogeneous Catalyst for the Synthesis of Chalcones. Molecules, 2013, 18, 10081-10094.	1.7	27
144	Synthesis, in vitro urease inhibitory activity, and molecular docking studies of thiourea and urea derivatives. Bioorganic Chemistry, 2018, 80, 129-144.	2.0	27

#	Article	IF	CITATIONS
145	Syntheses, in vitro urease inhibitory activities of urea and thiourea derivatives of tryptamine, their molecular docking and cytotoxic studies. Bioorganic Chemistry, 2019, 83, 595-610.	2.0	27
146	Aryl-oxadiazole Schiff bases: Synthesis, α-glucosidase in vitro inhibitory activity and their in silico studies. Arabian Journal of Chemistry, 2020, 13, 4904-4915.	2.3	27
147	Schiff Bases of 3-Formylchromones as Antibacterial, Antifungal, and Phytotoxic Agents (Supplementry) Tj ETQq1	1 8.78431	4 rgBT /Over
148	Synthesis and in silico studies of novel sulfonamides having oxadiazole ring: As β -glucuronidase inhibitors. Bioorganic Chemistry, 2017, 71, 86-96.	2.0	26
149	Synthesis, molecular docking and xanthine oxidase inhibitory activity of 5-aryl-1H-tetrazoles. Bioorganic Chemistry, 2018, 79, 201-211.	2.0	26
150	Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. International Journal of Biological Macromolecules, 2020, 154, 217-232.	3.6	26
151	Reductive cleavage of t-butyldimethylsilyl ethers with sodium hydride. Tetrahedron Letters, 1988, 29, 6161-6162.	0.7	25
152	Thiadiazole derivatives as New Class of β-glucuronidase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 1909-1918.	1.4	25
153	Coumarin sulfonates: New alkaline phosphatase inhibitors; inÂvitro and in silico studies. European Journal of Medicinal Chemistry, 2017, 131, 29-47.	2.6	25
154	Synthesis, characterization and antileishmanial studies of some bioactive heteroleptic pentavalent antimonials. Applied Organometallic Chemistry, 2017, 31, e3606.	1.7	25
155	Biology-oriented drug synthesis (BIODS): InÂvitro β-glucuronidase inhibitory and in silico studies on 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl aryl carboxylate derivatives. European Journal of Medicinal Chemistry, 2017, 125, 1289-1299.	2.6	25
156	Isatin based thiosemicarbazide derivatives as potential inhibitor of α-glucosidase, synthesis and their molecular docking study. Journal of Molecular Structure, 2020, 1222, 128922.	1.8	25
157	Binding of Transition Metal Ions [Cobalt, Copper, Nickel and Zinc] with Furanyl-, Thiophenyl-, Pyrrolyl-, Salicylyl-and Pyridyl-Derived Cephalexins as Potent Antibacterial Agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 51-56.	2.5	24
158	Palladiumâ€Catalyzed Regioselective Crossâ€Dehydrogenative Coupling of Benzofurans with Uracils at Room Temperature. European Journal of Organic Chemistry, 2015, 2015, 2796-2800.	1.2	24
159	Synthesis and urease inhibitory activities of benzophenone semicarbazones/thiosemicarbazones. Medicinal Chemistry Research, 2016, 25, 2666-2679.	1.1	24
160	An efficient one-pot protocol for the conversion of benzaldehydes into tetrazole analogs. Tetrahedron Letters, 2016, 57, 523-524.	0.7	24
161	Bis-coumarins; non-cytotoxic selective urease inhibitors and antiglycation agents. Bioorganic Chemistry, 2019, 91, 103170.	2.0	24
162	Synthesis, in vitro and in silico screening of 2-amino-4-aryl-6-(phenylthio) pyridine-3,5-dicarbonitriles as novel α-glucosidase inhibitors. Bioorganic Chemistry, 2020, 100, 103879.	2.0	24

#	Article	IF	CITATIONS
163	Xanthine oxidase inhibitory activity of nicotino/isonicotinohydrazides: A systematic approach from in vitro , in silico to in vivo studies. Bioorganic and Medicinal Chemistry, 2017, 25, 2351-2371.	1.4	23
164	Atenolol thiourea hybrid as potent urease inhibitors: Design, biology-oriented drug synthesis, inhibitory activity screening, and molecular docking studies. Bioorganic Chemistry, 2020, 94, 103359.	2.0	23
165	Potent α-amylase inhibitors and radical (DPPH and ABTS) scavengers based on benzofuran-2-yl(phenyl)methanone derivatives: Syntheses, in vitro, kinetics, and in silico studies. Bioorganic Chemistry, 2020, 104, 104238.	2.0	23
166	Synthesis of indole derivatives as diabetics II inhibitors and enzymatic kinetics study of α-glucosidase and α-amylase along with their in-silico study. International Journal of Biological Macromolecules, 2021, 190, 301-318.	3.6	23
167	Synthesis and Bioactivities of Naturally Occurring Anthraquinones: Isochrysophanol, Isozyganein, ï‰-Hydroxyisochrysophanol and Morindaparvin. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2001, 56, 689-696.	0.3	22
168	Synthesis and Urease Enzyme Inhibitory Effects of Some Dicoumarols. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 19, 367-371.	2.5	22
169	Piroxicam sulfonates biology-oriented drug synthesis (BIODS), characterization and anti-nociceptive screening. Medicinal Chemistry Research, 2016, 25, 1468-1475.	1.1	22
170	Synthesis and in vitro urease inhibitory activity of benzohydrazide derivatives, in silico and kinetic studies. Bioorganic Chemistry, 2019, 82, 163-177.	2.0	22
171	Indole-3-acetamides: As Potential Antihyperglycemic and Antioxidant Agents; Synthesis, <i>In Vitro</i> α-Amylase Inhibitory Activity, Structure–Activity Relationship, and <i>In Silico</i> Studies. ACS Omega, 2021, 6, 2264-2275.	1.6	22
172	Synthesis and in vitro Leishmanicidal Activity of Disulfide Derivatives. Medicinal Chemistry, 2011, 7, 704-710.	0.7	22
173	Evaluation of synthetic 2-aryl quinoxaline derivatives as α-amylase, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitors. International Journal of Biological Macromolecules, 2022, 211, 653-668.	3.6	22
174	Leishmanicidal potential of N-substituted morpholine derivatives: Synthesis and structure–activity relationships. Natural Product Research, 2009, 23, 479-484.	1.0	21
175	Synthesis of indole-2-hydrazones in search of potential leishmanicidal agents. Medicinal Chemistry Research, 2014, 23, 5282-5293.	1.1	21
176	Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives. Bioorganic Chemistry, 2015, 60, 37-41.	2.0	21
177	Carbohydrazones as new class of carbonic anhydrase inhibitors: Synthesis, kinetics, and ligand docking studies. Bioorganic Chemistry, 2017, 72, 89-101.	2.0	21
178	SYNTHESIS, SPECTROSCOPIC CHARACTERIZATION, AND BIOLOGICAL APPLICATIONS OF ORGANOTIN(IV) DERIVATIVES OF 2-(N-MALEOYL)-3-PHENYLPROPANOIC ACID. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2002, 32, 1521-1536.	1.8	20
179	Synthesis, Characterization, and Biological Activity of n-Tributyltin Derivatives of Pharmaceutically Active Carboxylates. Monatshefte Für Chemie, 2002, 133, 1089-1096.	0.9	20
180	Solvent-free click chemistry for tetrazole synthesis from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-Based fluorinated ionic liquids, their micellization, and density functional theory studies. RSC Advances, 2014, 4, 64128-64137.	1.7	20

#	Article	IF	CITATIONS
181	Coumarin sulfonates: As potential leads for ROS inhibition. Bioorganic Chemistry, 2016, 69, 37-47.	2.0	20
182	Synthesis of indole analogs as potent β-glucuronidase inhibitors. Bioorganic Chemistry, 2017, 72, 323-332.	2.0	20
183	Novel Azoles as Antiparasitic Remedies against Brain-Eating Amoebae. Antibiotics, 2020, 9, 188.	1.5	20
184	Evaluation and docking of indole sulfonamide as a potent inhibitor of α-glucosidase enzyme in streptozotocin –induced diabetic albino wistar rats. Bioorganic Chemistry, 2021, 110, 104808.	2.0	20
185	Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. International Journal of Biological Macromolecules, 2021, 188, 1025-1036.	3.6	20
186	Synthesis and urease inhibitory potential of benzophenone sulfonamide hybrid in vitro and in silico. Bioorganic and Medicinal Chemistry, 2019, 27, 1009-1022.	1.4	20
187	Enzyme inhibition, radical scavenging, and spectroscopic studies of vanadium(IV)–hydrazide complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2009, 24, 1336-1343.	2.5	19
188	Microwave-assisted solvent free efficient synthesis of 1,3,4-oxadiazole-2(3H)-thiones and their potent in vitro urease inhibition activity. European Journal of Chemistry, 2012, 3, 143-146.	0.3	19
189	Evaluation of the thiazole Schiff bases as \$\$upbeta \$\$ β -glucuronidase inhibitors and their in silico studies. Molecular Diversity, 2014, 18, 295-306.	2.1	19
190	Synthesis of phenyl thiazole hydrazones and their activity against glycation of proteins. Medicinal Chemistry Research, 2015, 24, 3077-3085.	1.1	19
191	Synthesis of novel bisindolylmethanes: New carbonic anhydrase II inhibitors, docking, and 3D pharmacophore studies. Bioorganic Chemistry, 2016, 68, 90-104.	2.0	19
192	1-[(4′-Chlorophenyl) carbonyl-4-(aryl) thiosemicarbazide derivatives as potent urease inhibitors: Synthesis, in vitro and in silico studies. Bioorganic Chemistry, 2018, 79, 363-371.	2.0	19
193	Novel antiacanthamoebic compounds belonging to quinazolinones. European Journal of Medicinal Chemistry, 2019, 182, 111575.	2.6	19
194	Schiff bases of tryptamine as potent inhibitors of nucleoside triphosphate diphosphohydrolases (NTPDases): Structure-activity relationship. Bioorganic Chemistry, 2019, 82, 253-266.	2.0	19
195	Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico study of S-naproxen derivatives. Bioorganic Chemistry, 2019, 83, 29-46.	2.0	19
196	Antiglycation and antioxidant potential of novel imidazo[4,5-b]pyridine benzohydrazones. Arabian Journal of Chemistry, 2019, 12, 3118-3128.	2.3	19
197	Synthesis of benzimidazole derivatives as potent inhibitors for α-amylase and their molecular docking study in management of type-II diabetes. Journal of Molecular Structure, 2021, 1232, 130029.	1.8	19
198	Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. Journal of King Saud University - Science, 2021, 33, 101401.	1.6	19

#	Article	IF	CITATIONS
199	Synthesis and β-Glucuronidase Inhibitory Potential of Benzimidazole Derivatives. Medicinal Chemistry, 2012, 8, 421-427.	0.7	19
200	Synthesis and Antibacterial and Antifungal Activity of 5-Substituted Imidazolones. Letters in Drug Design and Discovery, 2009, 6, 69-77.	0.4	18
201	Synthesis and DPPH Radical Scavenging Activity of 5-Arylidene-N,Ndimethylbarbiturates. Medicinal Chemistry, 2011, 7, 231-236.	0.7	18
202	Synthesis, Cytotoxic and Phytotoxic Effects of Some New N4-Aryl Substituted Isatin-3-thiosemicarbazones. Letters in Drug Design and Discovery, 2011, 8, 452-458.	0.4	18
203	Synthesis of Novel Triazinoindole-Based Thiourea Hybrid: A Study on α-Glucosidase Inhibitors and Their Molecular Docking. Molecules, 2019, 24, 3819.	1.7	18
204	Synthesis of Methyl Ether Analogues of Sildenafil (Viagra®) Possessing Tyrosinase Inhibitory Potential. Chemistry and Biodiversity, 2005, 2, 470-476.	1.0	17
205	An expeditious synthetic approach towards the synthesis of Bis-Schiff bases (aldazines) using ultrasound. Ultrasonics Sonochemistry, 2014, 21, 1200-1205.	3.8	17
206	A rapid and efficient CsF catalyzed tandem Knoevenagel–Michael reaction. Journal of Fluorine Chemistry, 2014, 158, 1-5.	0.9	17
207	Rapid cesium fluoride-catalyzed Knoevenagel condensation for the synthesis of highly functionalized 4,4′-(arylmethylene)bis(1H-pyrazol-5-ol) derivatives. Monatshefte Für Chemie, 2015, 146, 1587-1590.	0.9	17
208	Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorganic Chemistry, 2017, 70, 133-143.	2.0	17
209	Synthesis, in vitro \$\$alpha \$\$ α -glucosidase inhibitory activity, and in silico study of (E)-thiosemicarbazones and (E)-2-(2-(arylmethylene)hydrazinyl)-4-arylthiazole derivatives. Molecular Diversity, 2018, 22, 841-861.	2.1	17
210	Investigation of new quinoline derivatives as promising inhibitors of NTPDases: Synthesis, SAR analysis and molecular docking studies. Bioorganic Chemistry, 2019, 87, 218-226.	2.0	17
211	Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico studies on ibuprofen derivatives. Molecular Diversity, 2021, 25, 143-157.	2.1	17
212	Acylhydrazide and Isatin Schiff Bases as Alternate UV-Laser Desorption Ionization (LDI) Matrices for Low Molecular Weight (LMW) Peptides Analysis. American Journal of Analytical Chemistry, 2012, 03, 779-789.	0.3	17
213	2-Mercapto Benzothiazole Derivatives: As Potential Leads for the Diabetic Management. Medicinal Chemistry, 2020, 16, 826-840.	0.7	17
214	Two New Cinnamic Acid Esters from Marine Brown Alga Spatoglossum variabile Chemical and Pharmaceutical Bulletin, 2002, 50, 1297-1299.	0.6	16
215	Acridine-based (thio)semicarbazones and hydrazones: Synthesis, in vitro urease inhibition, molecular docking and in-silico ADME evaluation. Bioorganic Chemistry, 2019, 82, 6-16.	2.0	16
216	Synthesis and Biological Evaluation of Some New N4-Aryl Substituted 5-Chloroisatin-3-thiosemicarbazones. Medicinal Chemistry, 2012, 8, 505-514.	0.7	16

#	Article	IF	CITATIONS
217	Biology-Oriented Synthesis (BIOS) of Piperine Derivatives and their Comparative Analgesic and Antiinflammatory Activities. Medicinal Chemistry, 2018, 14, 269-280.	0.7	16
218	Syntheses of Selected Quaternary Phenacylbromopyridinium Compounds and their Biological Evaluation. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1999, 54, 1210-1218.	0.3	15
219	Synthesis and Biological Screening of 7-Hydroxy-4-Methyl-2 H -Chromen-2-One, 7-Hydroxy-4,5-Dimethyl-2 H -Chromen-2-One and their Some Derivatives. Natural Product Research, 2003, 17, 115-125.	1.0	15
220	Synthesis of Dithioacetals and Oxathioacetals with Chiral Auxiliaries. Synthetic Communications, 2004, 34, 2641-2653.	1.1	15
221	2,5-Disubstituted-1,3,4-oxadiazoles: thymidine phosphorylase inhibitors. Medicinal Chemistry Research, 2013, 22, 6022-6028.	1.1	15
222	Antibiofilm potential of synthetic 2-amino-5-chlorobenzophenone Schiff bases and its confirmation through fluorescence microscopy. Microbial Pathogenesis, 2017, 110, 497-506.	1.3	15
223	Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives. Bioorganic Chemistry, 2018, 78, 17-23.	2.0	15
224	Aryl Quinazolinone Derivatives as Novel Therapeutic Agents against Brain-Eating Amoebae. ACS Chemical Neuroscience, 2020, 11, 2438-2449.	1.7	15
225	Synthesis, in vitro, and in silico evaluation of Indazole Schiff bases as potential α-glucosidase inhibitors. Journal of Molecular Structure, 2021, 1242, 130826.	1.8	15
226	Schiff Bases of Istain: Potential Anti-Leishmanial Agents. Letters in Drug Design and Discovery, 2008, 5, 243-249.	0.4	15
227	Syntheses and Evaluation of the Analgesic Activity of Some 4-Acetyl- 4-phenylpiperidine and 4-Hydroxy-4-phenylpiperidine Derivatives. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1999, 54, 1327-1336.	0.3	14
228	Structural Basis of Binding and Rationale for the Potent Urease Inhibitory Activity of Biscoumarins. BioMed Research International, 2014, 2014, 1-12.	0.9	14
229	One-pot synthesis of tetrazole-1,2,5,6-tetrahydronicotinonitriles and cholinesterase inhibition: Probing the plausible reaction mechanism via computational studies. Bioorganic Chemistry, 2016, 65, 38-47.	2.0	14
230	4-Arylamino-6-nitroquinazolines: Synthesis and their activities against neglected disease leishmaniasis. European Journal of Medicinal Chemistry, 2016, 108, 13-20.	2.6	14
231	Synthesis of 2-phenyl-1H-imidazo[4,5-b]pyridine as type 2 diabetes inhibitors and molecular docking studies. Medicinal Chemistry Research, 2017, 26, 916-928.	1.1	14
232	Synthesis, inÂvitro β -glucuronidase inhibitory potential and molecular docking studies of quinolines. European Journal of Medicinal Chemistry, 2017, 139, 849-864.	2.6	14
233	Synthesis of heteroleptic pentavalent antimonials bearing heterocyclic cinnamate moieties and their biological studies. Inorganica Chimica Acta, 2018, 476, 12-19.	1.2	14
234	Benzylidine indane-1,3-diones: As novel urease inhibitors; synthesis, in vitro, and in silico studies. Bioorganic Chemistry, 2018, 81, 658-671.	2.0	14

#	Article	IF	CITATIONS
235	4-Oxycoumarinyl linked acetohydrazide Schiff bases as potent urease inhibitors. Bioorganic Chemistry, 2020, 105, 104365.	2.0	14
236	Substituted Benzimidazole Analogues as Potential α-Amylase Inhibitors and Radical Scavengers. ACS Omega, 2021, 6, 22726-22739.	1.6	14
237	N-Aroylated Isatins: Antiglycation Activity. Letters in Drug Design and Discovery, 2010, 7, 188-193.	0.4	14
238	Dicyanoanilines as potential and dual inhibitors of α-amylase and α-glucosidase enzymes: Synthesis, characterization, in vitro, in silico, and kinetics studies. Arabian Journal of Chemistry, 2022, 15, 103651.	2.3	14
239	Isatin thiazoles as antidiabetic: Synthesis, in vitro enzyme inhibitory activities, kinetics, and in silico studies. Archiv Der Pharmazie, 2022, 355, e2100481.	2.1	14
240	An Alternative Method for the Synthesis of Î ³ -Lactones by Using Cesium Fluoride-Celite/Acetonitrile Combination. Synthetic Communications, 2003, 33, 3435-3453.	1.1	13
241	Piperidines: A new class of Urease inhibitors. Natural Product Research, 2006, 20, 523-530.	1.0	13
242	4-[5-(2-Methoxyphenyl)-1,3,4-oxadiazol-2-yl]benzohydrazide. MolBank, 2014, 2014, M826.	0.2	13
243	A new glycotoxins inhibitor attenuates insulin resistance in liver and fat cells. Biochemical and Biophysical Research Communications, 2016, 476, 188-195.	1.0	13
244	Chelation-Assisted Copper-Mediated Direct Acetylamination of 2-Arylpyridine C–H Bonds with Cyanate Salts. Journal of Organic Chemistry, 2016, 81, 6087-6092.	1.7	13
945	Synthesis, Spectroscopic Characterization: (IR, Multinuclear NMR,119mSn Mössbauer and Mass) Tj ETQq1 1 0.78		
245	Triorganotin(IV) Complexes of (E)â€3â€(4â€Chlorophenyl)â€2â€phenylpropenoic Acid. Synthesis and Reactivity ir Inorganic, Metal Organic, and Nano Metal Chemistry, 2004, 34, 1379-1399.	1.8 ו	12
246	An Inâ€Depth Characterization of Urban Aerosols Using Electron Microscopy and Energy Dispersive Xâ€Ray Analysis. Clean - Soil, Air, Water, 2009, 37, 544-554.	0.7	12
247	Benzimidazole derivatives protect against cytokine-induced apoptosis in pancreatic β-Cells. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4672-4676.	1.0	12
248	In silico binding analysis and SAR elucidations of newly designed benzopyrazine analogs as potent inhibitors of thymidine phosphorylase. Bioorganic Chemistry, 2016, 68, 80-89.	2.0	12
249	Novel quinoxaline based chemosensors with selective dual mode of action: nucleophilic addition and host–guest type complex formation. RSC Advances, 2016, 6, 64009-64018.	1.7	12
250	Syntheses of 4,6-dihydroxypyrimidine diones, their urease inhibition, in vitro, in silico, and kinetic studies. Bioorganic Chemistry, 2017, 75, 317-331.	2.0	12
251	2,5-Disubstituted thiadiazoles as potent \hat{l}^2 -glucuronidase inhibitors; Synthesis, in vitro and in silico studies. Bioorganic Chemistry, 2019, 91, 103126.	2.0	12
252	Antibacterial Effects of Quinazolin-4(3H)-One Functionalized-Conjugated Silver Nanoparticles. Antibiotics, 2019, 8, 179.	1.5	12

#	Article	IF	CITATIONS
253	Chalcones and Bis-Chalcones Analogs as DPPH and ABTS Radical Scavengers. Letters in Drug Design and Discovery, 2021, 18, 249-257.	0.4	12
254	Synthesis, Molecular Modeling and Biological Evaluation of 5-arylidene-N,N-diethylthiobarbiturates as Potential α-glucosidase Inhibitors. Medicinal Chemistry, 2019, 15, 175-185.	0.7	12
255	New biologically dynamic hybrid pharmacophore triazinoindole-based-thiadiazole as potent α-glucosidase inhibitors: In vitro and in silico study. International Journal of Biological Macromolecules, 2022, 199, 77-85.	3.6	12
256	Isolation and Structure Elucidation of Two New Xanthones from Gentiana azurium Bunge (Fam.) Tj ETQq0 0 0 rg 331-334.	gBT /Overl 0.3	ock 10 Tf 50 6 11
257	An Alternative Method for the Highly Selective Iodination of Alcohols Using a CsI/BF3·Et2O System. Synthetic Communications, 2003, 33, 2531-2540.	1.1	11
258	Tertiary Amines Promoted Synthesis of Symmetrical 1,3-Disubstituted Ureas. Natural Product Research, 2003, 17, 351-354.	1.0	11
259	Synthesis and Toxicity Evaluation of Some N4-Aryl Substituted 5-Trifluoromethoxyisatin-3-thiosemicarbazones. Molecules, 2011, 16, 6408-6421.	1.7	11
260	Antidepressant activity of carbamates and urea derivatives. Medicinal Chemistry Research, 2012, 21, 2709-2715.	1.1	11
261	Synthesis and biological evaluation of some N 4-aryl-substituted 5-fluoroisatin-3-thiosemicarbazones. Medicinal Chemistry Research, 2013, 22, 5878-5889.	1.1	11
262	Urease inhibition and anticancer activity of novel polyfunctional 5,6-dihydropyridine derivatives and their structure-activity relationship. European Journal of Chemistry, 2013, 4, 49-52.	0.3	11
263	Syntheses, Cholinesterases Inhibition, and Molecular Docking Studies of Pyrido[2,3â€ <i>b</i>]pyrazine Derivatives. Chemical Biology and Drug Design, 2015, 86, 1115-1120.	1.5	11
264	A new and facile CuCl2·2H2O-catalyzed one-pot three-component synthesis for quinazolines. Monatshefte Für Chemie, 2015, 146, 1877-1880.	0.9	11
265	2-Arylquinazolin-4(3H)-ones: Inhibitory Activities Against Xanthine Oxidase. Medicinal Chemistry, 2016, 12, 54-62.	0.7	11
266	Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorganic Chemistry, 2020, 98, 103745.	2.0	11
267	Antiglycation Activity of Triazole Schiff's Bases Against Fructosemediated Glycation: In Vitro and In Silico Study. Medicinal Chemistry, 2020, 16, 575-591.	0.7	11
268	A modified, economical and efficient synthesis of variably substituted pyrazolo[4,3-d]pyrimidin-7-ones. Journal of Heterocyclic Chemistry, 2005, 42, 1085-1093.	1.4	10
269	Synthesis and leishmanicidal activity of 2,3,4-substituted-5-imidazolones. Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 29-37.	2.5	10
270	2-Arylquinazolin-4(3H)-ones: A novel class of thymidine phosphorylase inhibitors. Bioorganic Chemistry, 2015, 63, 142-151.	2.0	10

#	Article	IF	CITATIONS
271	Pd-Catalyzed Dehydrogenative Cross-Coupling of 1,4-Quinones with N,N′-Dialkyluracils. Australian Journal of Chemistry, 2015, 68, 165.	0.5	10
272	Synthetic indole Mannich bases: Their ability to modulate in vitro cellular immunity. Bioorganic Chemistry, 2015, 60, 118-122.	2.0	10
273	Synthesis, anti-diabetic and <i>in silico</i> QSAR analysis of flavone hydrazide Schiff base derivatives. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12723-12738.	2.0	10
274	Acyl Hydrazides: Potent Antioxidants. Letters in Drug Design and Discovery, 2012, 9, 135-139.	0.4	10
275	Antiglycation Activity of Quinoline Derivatives- A New Therapeutic Class for the Management of Type 2 Diabetes Complications. Medicinal Chemistry, 2014, 11, 60-68.	0.7	10
276	Tetra-n-butylammonium fluoride-mediated dimerization of (α-methylbenzylidene)malononitriles to form polyfunctional 5,6-dihydropyridines derivatives under solvent-free conditions. European Journal of Chemistry, 2012, 3, 179-185.	0.3	9
277	Synthesis, in vitro \hat{I}^2 -glucuronidase inhibitory activity and in silico studies of novel (E) Tj ETQq1 1 0.784314 rgBT	/Overlock 2.0	10 Tf 50 50
278	1,1'-Carbonyldiimidazole (CDI) Mediated Facile Synthesis, Structural Characterization, Antimicrobial Activity, and in-silico Studies of Coumarin- 3-carboxamide Derivatives. Medicinal Chemistry, 2018, 14, 86-101.	0.7	9
279	Synthesis, in vitro urease inhibitory activity, and molecular docking studies of (perfluorophenyl)hydrazone derivatives. Medicinal Chemistry Research, 2019, 28, 873-883.	1.1	9
280	Antiamoebic activity of synthetic tetrazoles against Acanthamoeba castellanii belonging to T4 genotype and effects of conjugation with silver nanoparticles. Parasitology Research, 2020, 119, 1943-1954.	0.6	9
281	Inhibition potential of phenyl linked benzimidazole-triazolothiadiazole modular hybrids against β-glucuronidase and their interactions thereof. International Journal of Biological Macromolecules, 2020, 161, 355-363.	3.6	9
282	<i>N</i> -Aryl-3,4-dihydroisoquinoline Carbothioamide Analogues as Potential Urease Inhibitors. ACS Omega, 2021, 6, 15794-15803.	1.6	9
283	β-Glucuronidase Inhibitory Studies on Coumarin Derivatives. Medicinal Chemistry, 2014, 10, 778-782.	0.7	9
284	Synthesis of Thiocarbohydrazones and Evaluation of their in vitro Antileishmanial Activity. Medicinal Chemistry, 2018, 14, 725-732.	0.7	9
285	Synthesis, <i>inÂvitro</i> biological screening and docking study of benzo[<i>d</i>]oxazole <i>bis</i> Schiff base derivatives as a potent anti-Alzheimer agent. Journal of Biomolecular Structure and Dynamics, 2023, 41, 1649-1664.	2.0	9
286	Regioselective Conversion of Anhydro Sugars into Halohydrins and X-Ray Study. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 337-340.	0.3	8
287	Synthesis and Pharmacological Activity of 4-(4'-(Chlorophenyl)-4-hydroxypiperidine) Derivatives. Chemical and Pharmaceutical Bulletin, 2005, 53, 64-66.	0.6	8
288	CsF-Celite, an Efficient Solid State Reagent for the Syntheses of Thioesters and Thioethers. Monatshefte Für Chemie, 2005, 136, 1583-1589.	0.9	8

#	Article	IF	CITATIONS
289	Effect of successive increase in alcohol chains on reaction with isocyanates and isothiocyanates. Natural Product Research, 2010, 24, 18-23.	1.0	8
290	Synthesis and biological evaluation of some N4-substituted 5-nitroisatin-3-thiosemicarbazones. Medicinal Chemistry Research, 2012, 21, 2251-2262.	1.1	8
291	An efficient synthesis of substituted bis(indolyl)methanes using sodium bromate and sodium hydrogen sulfite in water. Journal of the Iranian Chemical Society, 2012, 9, 81-83.	1.2	8
292	Benzimidazole, coumrindione and flavone derivatives as alternate UV laser desorption ionization (LDI) matrices for peptides analysis. Chemistry Central Journal, 2013, 7, 77.	2.6	8
293	Aminoquinoline Schiff Bases as Non-Acidic, Non-Steroidal, Anti-Inflammatory Agents. ChemistrySelect, 2017, 2, 10050-10054.	0.7	8
294	Antiamoebic activity of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one library against Acanthamoeba castellanii. Parasitology Research, 2020, 119, 2327-2335.	0.6	8
295	Discovery of Dual Inhibitors of Acetyl and Butrylcholinesterase and Antiproliferative Activity of 1,2,4â€Triazoleâ€3â€thiol: Synthesis and In Silico Molecular Study. ChemistrySelect, 2020, 5, 6430-6439.	0.7	8
296	Aryl hydrazones linked thiazolyl coumarin hybrids as potential urease inhibitors. Journal of the Iranian Chemical Society, 2022, 19, 1221-1238.	1.2	8
297	Xanthine Oxidase Inhibitory and Molecular Docking Studies on Pyrimidones. Medicinal Chemistry, 2018, 14, 524-535.	0.7	8
298	Potential anti-acanthamoebic effects through inhibition of CYP51 by novel quinazolinones. Acta Tropica, 2022, 231, 106440.	0.9	8
299	Syntheses and Cytotoxic, Antimicrobial, Antifungal and Cardiovascular Activity of New Quinoline Derivatives. Arzneimittelforschung, 2000, 50, 915-924.	0.5	7
300	Tyrosinase inhibition: Conformational analysis based studies on molecular dynamics calculations of bipiperidine based inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2005, 20, 401-407.	2.5	7
301	An expeditious and environmentally friendly synthesis of 3-substituted isocoumarins using microwave irradiation. Natural Product Research, 2008, 22, 1120-1127.	1.0	7
302	A Novel Unusual Isocoumarin Derivative, 3H-Furo[3,4-c]isochromene-1,5- dione. Letters in Organic Chemistry, 2010, 7, 557-560.	0.2	7
303	Solvent-free 1H-tetrazole, 1,2,5,6-tetrahydronicotinonitrile and pyrazole synthesis using quinoline based ionic fluoride salts (QuFs): thermal and theoretical studies. RSC Advances, 2015, 5, 95061-95072.	1.7	7
304	3,4-Dimethoxybenzohydrazide derivatives as antiulcer: Molecular modeling and density functional studies. Bioorganic Chemistry, 2017, 75, 235-241.	2.0	7
305	Synthesis of 4-substituted ethers of benzophenone and their antileishmanial activities. Royal Society Open Science, 2018, 5, 171771.	1.1	7
306	Synthesis, β-glucuronidase inhibition and molecular docking studies of cyano-substituted bisindole hydrazone hybrids. Molecular Diversity, 2021, 25, 995-1009.	2.1	7

#	Article	IF	CITATIONS
307	Dihydroquinazolin-4(1H)-one derivatives as novel and potential leads for diabetic management. Molecular Diversity, 2022, 26, 849-868.	2.1	7
308	Synthesis, in vitro antiurease, in vivo antinematodal activity of quinoline analogs and their in-silico study. Bioorganic Chemistry, 2021, 115, 105199.	2.0	7
309	Ultrasound-Assisted, Convenient and Widely Applicable 1,1'-Carbonyl-diimidazole-Mediated "One-Pot" Synthesis of Acyl/Sulfonyl Hydrazines. Letters in Organic Chemistry, 2015, 12, 637-644.	0.2	7
310	Benzothiazole Derivatives: Novel Inhibitors of Methylglyoxal Mediated Glycation of Proteins In Vitro. Medicinal Chemistry, 2014, 10, 824-835.	0.7	7
311	SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL SCREENING OF VARIOUS N-SUBSTITUTED DERIVATIVES OF SULFONAMIDES. International Journal of Chemical Research, 2011, 3, 99-104.	0.1	7
312	Biology-oriented drug synthesis of nitrofurazone derivatives: Their α-glucosidase inhibitory activity and molecular docking studies. Arabian Journal of Chemistry, 2022, 15, 103806.	2.3	7
313	Synthesis and In Vitro Inhibitory Potential Towards Urease of 9-Anilinoacridines and Aciridinyl Hydrazides. Letters in Drug Design and Discovery, 2007, 4, 114-121.	0.4	6
314	Synthetic nanoparticle-conjugated bisindoles and hydrazinyl arylthiazole as novel antiamoebic agents against brain-eating amoebae. Experimental Parasitology, 2020, 218, 107979.	0.5	6
315	Synthesis of symmetrical bis-Schiff base-disulfide hybrids as highly effective anti-leishmanial agents. Bioorganic Chemistry, 2020, 99, 103819.	2.0	6
316	Synthesis and Biological Potential Assessment of 2-Substituted Quinazolin-4(3 <i>H</i>)-ones as Inhibitors of Phosphodiesterase-I and Carbonic Anhydrase-II. Medicinal Chemistry, 2015, 11, 336-341.	0.7	6
317	Anthranilic Acid Derivatives: Novel Inhibitors of Protein Glycation and the Associated Oxidative Stress in the Hepatocytes. Medicinal Chemistry, 2018, 14, 516-523.	0.7	6
318	Synthesis of Pyridinyl-benzo[d]imidazole/Pyridinyl-benzo[d]thiazole Derivatives and their Yeast Glucose Uptake Activity In Vitro. Letters in Drug Design and Discovery, 2019, 16, 984-993.	0.4	6
319	NH4Cl Mediated New Protocol for the Synthesis of 5-Arylidene Barbiturates. Letters in Organic Chemistry, 2011, 8, 28-32.	0.2	5
320	Determination of Volatile Constituents and Antimicrobial Activity of Camel Thorn (Alhagi camelorum) Flowers. Analytical Letters, 2014, 47, 413-421.	1.0	5
321	A new indanedione derivative alleviates symptoms of diabetes by modulating RAGE-NF-kappaB pathway in db/db mice. Biochemical and Biophysical Research Communications, 2018, 501, 863-870.	1.0	5
322	Synthesis, in vitro, and in silico studies of newly functionalized quinazolinone analogs for the identification of potent α-glucosidase inhibitors. Journal of the Iranian Chemical Society, 2021, 18, 2017-2034.	1.2	5
323	3-Substituted Isocoumarins as Thymidine Phosphorylase Inhibitors. Letters in Drug Design and Discovery, 2010, 7, 265-268.	0.4	5
324	Derivatives of 6-Nitrobenzimidazole Inhibit Fructose-Mediated Protein Glycation and Intracellular Reactive Oxygen Species Production. Medicinal Chemistry, 2017, 13, 577-584.	0.7	5

#	Article	IF	CITATIONS
325	Synthesis of <i>β</i> -Ketosulfone Derivatives As New Non-Cytotoxic Urease Inhibitors <i>In Vitro</i> . Medicinal Chemistry, 2020, 16, 244-255.	0.7	5
326	Synthesis of new 1,2-disubstituted benzimidazole analogs as potent inhibitors of β-Glucuronidase and in silico study. Arabian Journal of Chemistry, 2022, 15, 103505.	2.3	5
327	Benzophenone Sulfonamide Derivatives as Interacting Partners and Inhibitors of Human P-glycoprotein. Anti-Cancer Agents in Medicinal Chemistry, 2020, 20, 1739-1751.	0.9	5
328	Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study. Journal of Saudi Chemical Society, 2022, 26, 101474.	2.4	5
329	Sodium hydride/hexamethylphosphoric triamide: a new and efficient reagent towards the synthesis of protected 1,2- and 5,6-enopyranosides. New Journal of Chemistry, 2001, 25, 896-898.	1.4	4
330	Crystal Structure of 4-Bromobenzohydrazide. Analytical Sciences: X-ray Structure Analysis Online, 2008, 24, X103-X104.	0.1	4
331	In Vitro Leishmanicidal Activity of 3-substituted Isocoumarins: Synthesis and Structure activity Relationship. Medicinal Chemistry, 2008, 4, 163-169.	0.7	4
332	2-(5-Chloro-1,3-benzothiazol-2-yl)-4-methoxyphenol. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2877-o2877.	0.2	4
333	Antiproliferative effects of novel urea derivatives against human prostate and lung cancer cells; and their inhibition of β-glucuronidase activity. Medicinal Chemistry Research, 2014, 23, 1099-1113.	1.1	4
334	A bis-Schiff base of isatin improves methylglyoxal mediated insulin resistance in skeletal muscle cells. Archives of Pharmacal Research, 2015, , 1.	2.7	4
335	Structural mass irregularities and fiber volume influence on morphology and mechanical properties of unsaturated polyester resin in matrix composites. Journal of Advanced Research, 2015, 6, 833-838.	4.4	4
336	Thymidine phosphorylase and prostrate cancer cell proliferation inhibitory activities of synthetic 4-hydroxybenzohydrazides: In vitro, kinetic, and in silico studies. PLoS ONE, 2020, 15, e0227549.	1.1	4
337	Design and Synthesis of Fluoroquinolone Derivatives as Potent αâ€Glucosidase Inhibitors: In Vitro Inhibitory Screening with In Silico Docking Studies. ChemistrySelect, 2021, 6, 2483-2491.	0.7	4
338	Anti-glycemic potential of benzophenone thio/semicarbazone derivatives: synthesis, enzyme inhibition and ligand docking studies. Journal of Biomolecular Structure and Dynamics, 2022, 40, 7339-7350.	2.0	4
339	Synthesis and characterization of novel piroxicam derivatives and their antiglycation activity. Journal of Molecular Structure, 2021, 1239, 130470.	1.8	4
340	An effort to find new α <i>-</i> amylase inhibitors as potent antidiabetics compounds based on indole-based-thiadiazole analogs. Journal of Biomolecular Structure and Dynamics, 2022, 40, 13103-13114.	2.0	4
341	ROS Inhibitory Activity and Cytotoxicity Evaluation of Benzoyl, Acetyl, Alkyl Ester, and Sulfonate Ester Substituted Coumarin Derivatives. Medicinal Chemistry, 2020, 16, 1099-1111.	0.7	4
342	Biology-oriented Drug Synthesis (BIODS), Structural Characterization and Bioactivities of Novel Albendazole Derivatives. Letters in Drug Design and Discovery, 2019, 16, 1329-1338.	0.4	4

#	Article	IF	CITATIONS
343	Diversified Thiazole Substituted Coumarins and Chromones as Non- Cytotoxic ROS and NO Inhibitors. Letters in Drug Design and Discovery, 2020, 17, 547-555.	0.4	4
344	Discovery of New N-hydrazinecarbothioamide Indazole Hybrids: As Potential Radical (ABTS and DPPH) Scavengers. Letters in Drug Design and Discovery, 2020, 17, 1177-1185.	0.4	4
345	Unsymmetrical 1,3-disubstituted urea derivatives as α-chymotrypsin inhibitors. Medicinal Chemistry Research, 2014, 23, 3585-3592.	1.1	3
346	Microwave-assisted green approach toward the unexpected synthesis of pyrazole-4-carboxylates. Journal of the Iranian Chemical Society, 2016, 13, 1405-1410.	1.2	3
347	New isatin derivative inhibits neurodegeneration by restoring insulin signaling in brain. Journal of Chemical Neuroanatomy, 2017, 81, 1-9.	1.0	3
348	Synthesis and in vitro anti-proliferative capabilities of steroidal thiazole and indole derivatives. Journal of Saudi Chemical Society, 2019, 23, 775-780.	2.4	3
349	Catalytic and noncatalytic conversion of spent fat oil into combustible gases and liquids. Journal of Renewable and Sustainable Energy, 2019, 11, 023102.	0.8	3
350	Enhanced Antiâ€Bacterial Activity of Nonâ€Antibacterial Drug Candesartan Cilexetil by Delivery through Polymeric Micelles. ChemistrySelect, 2020, 5, 3605-3612.	0.7	3
351	Dihydropyrimidones: A ligands urease recognition study and mechanistic insight through in vitro and in silico approach. Medicinal Chemistry Research, 2021, 30, 120-132.	1.1	3
352	Synthesis of new urease enzyme inhibitors as antiulcer drug and computational study. Journal of Biomolecular Structure and Dynamics, 2022, 40, 8232-8247.	2.0	3
353	Tyrosinase Inhibitory Activity of S-Naproxen Derivatives. Letters in Drug Design and Discovery, 2019, 16, 1276-1285.	0.4	3
354	Benzophenone Esters and Sulfonates: Synthesis and their Potential as Antiinflammatory Agents. Medicinal Chemistry, 2019, 15, 162-174.	0.7	3
355	Biologyâ€oriented drug synthesis and evaluation of secnidazole esters as novel enzyme ınhibitors. Archiv Der Pharmazie, 2022, 355, e2100376.	2.1	3
356	Virtual Screening, Synthesis and Biological Evaluation of Streptococcus mutans Mediated Biofilm Inhibitors. Molecules, 2022, 27, 1455.	1.7	3
357	Benzophenone and coumarin derivatives as 3-CLPro inhibitors: Targeting cytokine storm through in silico and in vitro approaches. Journal of Molecular Structure, 2022, 1265, 133478.	1.8	3
358	An Expeditious Approach to Trisubstituted Chiral Tetrahydrofurans. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2000, 55, 317-320.	0.3	2
359	Antioxidant and ROS inhibitory activities of heterocyclic 2-Aryl-4(3H)-quinazolinone derivatives. Letters in Drug Design and Discovery, 2021, 18, .	0.4	2
360	Sulfonamides and Sulphonyl Ester of Quinolines as Non-Acidic, Non- Steroidal, Anti-inflammatory Agents. Letters in Drug Design and Discovery, 2021, 18, 112-120.	0.4	2

#	Article	IF	CITATIONS
361	Oxamide Derivatives as Potent α â€Glucosidase Inhibitors: Design, Synthesis, In Vitro Inhibitory Screening and In Silico Docking Studies. ChemistrySelect, 2021, 6, 7188-7201.	0.7	2
362	Boraxâ€catalyzed valorization of waste rubber and polyethylene using pyrolysis and copyrolysis reactions. Asia-Pacific Journal of Chemical Engineering, 2021, 16, e2696.	0.8	2
363	2â€Mercapto Benzoxazole Derivatives as Novel Leads: Urease Inhibition, In Vitro and In Silico Studies. ChemistrySelect, 2021, 6, 8490-8498.	0.7	2
364	New Bis-Pyrazolones as Potential Leads for ROS Inhibition; Environment Friendly Green Synthesis, Structural Characterization, and In Vitro Studies. Medicinal Chemistry, 2018, 14, 536-548.	0.7	2
365	2-Oxo-1,2,3,4-tetrahydropyrimidines Ethyl Esters as Potent β- Glucuronidase Inhibitors: One-pot Synthesis, In vitro and In silico Studies. Medicinal Chemistry, 2018, 14, 818-830.	0.7	2
366	Synthesis, in vitro evaluation, and molecular docking studies of benzofuran based hydrazone a new inhibitors of urease. Arabian Journal of Chemistry, 2022, 15, 103954.	2.3	2
367	Synthesis of Benzofuran–based Schiff bases as anti-diabetic compounds and their molecular docking studies. Journal of Molecular Structure, 2022, 1265, 133287.	1.8	2
368	Syntheses, in vitro, and in silico studies of rhodanine-based schiff bases as potential α-amylase inhibitors and radicals (DPPH and ABTS) scavengers. Molecular Diversity, 2023, 27, 767-791.	2.1	2
369	An Alternative Method for the Highly Selective Iodination of Alcohols Using a CsI/BF3×Et2O System ChemInform, 2003, 34, no.	0.1	1
370	Crystal structure and Hirshfeld surface analysis of 1-(4-bromophenyl)-2-{[5-(pyridin-3-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}ethan-1-one. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 623-626.	0.2	1
371	Facile CuCl2·2H2O catalyzed one-pot conversion of dimedone into highly functionalized indazole based N-arylhydrazinecarbothioamides. Journal of Saudi Chemical Society, 2020, 24, 92-97.	2.4	1
372	Synthesis of Chalcones as Potential α â€Glucosidase Inhibitors, Inâ€Vitro and Inâ€Silico Studies. ChemistrySelect, 2021, 6, 9933-9940.	0.7	1
373	Coumarinyl Aryl/Alkyl Sulfonates with Dual Potential: Alkaline Phosphatase and ROS Inhibitory Activities: In-Silico Molecular Modeling and ADME Evaluation. Letters in Drug Design and Discovery, 2019, 16, 256-272.	0.4	1
374	Enoxacin-based derivatives: antimicrobial and antibiofilm agent: aÂbiology-oriented drug synthesis (BIODS) approach. Future Medicinal Chemistry, 2022, 14, 947-962.	1.1	1
375	An Alternative Approach Towards the Syntheses of Thioethers and Thioesters Using CsF-Celite in Acetonitrile ChemInform, 2003, 34, no.	0.1	0
376	β-N-Cyanoethyl Acyl Hydrazide Derivatives: A New Class of β-Glucuronidase Inhibitors ChemInform, 2003, 34, no.	0.1	0
377	An Alternative Method for the Synthesis of γ-Lactones by Using Cesium Fluoride-Celite/Acetonitrile Combination ChemInform, 2003, 34, no.	0.1	0
378	Synthesis and Pharmacological Activity of 4-(4′-(Chlorophenyl)-4-hydroxypiperidine) Derivatives ChemInform, 2005, 36, no.	0.1	0

#	Article	IF	CITATIONS
379	Cesium Fluoride—Celite: A Solid Base for Efficient Syntheses of Aromatic Esters and Ethers ChemInform, 2005, 36, no.	0.1	0
380	Expeditious Method for Synthesis of Symmetrical 1,3-Disubstituted Ureas and Thioureas ChemInform, 2005, 36, no.	0.1	0
381	A Modified, Economical and Efficient Synthesis of Variably Substituted Pyrazolo[4,3-d]pyrimidin-7-ones ChemInform, 2006, 37, no.	0.1	0
382	Facile, economical and direct synthesis of 9-anilinoacridines. Natural Product Research, 2009, 23, 5-9.	1.0	0
383	Microwaves spark emission spectroscopy for the analysis of cations: A simple form of atomic emission spectroscopy. Chinese Chemical Letters, 2011, 22, 1084-1086.	4.8	0
384	3-(2-Ethyl-2-phenylhydrazin-1-ylidene)indolin-2-one. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3473-o3473.	0.2	0
385	Crystal structure and Hirshfeld surface analysis of 1-(4-chlorophenyl)-2-{[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]sulfanyl}ethanone. Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 524-527.	0.2	0
386	A new glycotoxin inhibitor mitigates diabetes in genetic mice model. , 2018, , .		0
387	Investigation of a New Spectrophotometric Method for the Analysis of Ciprofloxacin Based on Microwave Assisted Diazotization. Analytical Sciences, 2019, 35, 1183-1187.	0.8	0
388	Rapid Cesium Fluoride Catalyzed Synthesis of 5-Aryloxy-1-phenyl-1 H tetrazoles via Nucleophilic Aromatic Substitution. Letters in Organic Chemistry, 2021, 18, 389-394.	0.2	0
389	Synthesis and Evaluation of 6â€Ethoxyâ€2â€mercaptobenzothiazole Scaffolds as Potential <i>α</i> â€Clucosidase Inhibitors. ChemistrySelect, 2022, 7, .	0.7	0