
Henrik Lund Frandsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1598561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A revised multi-Fickian moisture transport model to describe non-Fickian effects in wood. Holzforschung, 2007, 61, 563-572.	0.9	85
2	Life cycle assessment of H2O electrolysis technologies. International Journal of Hydrogen Energy, 2020, 45, 23765-23781.	3.8	74
3	The Effect of Particle Size Distributions on the Microstructural Evolution During Sintering. Journal of the American Ceramic Society, 2013, 96, 103-110.	1.9	71
4	Ni migration in solid oxide cell electrodes: Review and revised hypothesis. Fuel Cells, 2021, 21, 415-429.	1.5	63
5	Continuum scale modelling and complementary experimentation of solid oxide cells. Progress in Energy and Combustion Science, 2021, 85, 100902.	15.8	58
6	Optimization of the strength of SOFC anode supports. Journal of the European Ceramic Society, 2012, 32, 1041-1052.	2.8	54
7	Modelling the impact of creep on the probability of failure of a solid oxide fuel cell stack. Journal of the European Ceramic Society, 2014, 34, 2695-2704.	2.8	54
8	Continuum mechanics simulations of NiO/Ni–YSZ composites during reduction and re-oxidation. Journal of Power Sources, 2010, 195, 2677-2690.	4.0	51
9	Development of Planar Metal Supported SOFC with Novel Cermet Anode. ECS Transactions, 2009, 25, 701-710.	0.3	49
10	Accelerated creep in solid oxide fuel cell anode supports during reduction. Journal of Power Sources, 2016, 323, 78-89.	4.0	49
11	Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation, characterization and testing. Journal of Membrane Science, 2011, 378, 51-60.	4.1	48
12	A hysteresis model suitable for numerical simulation of moisture content in wood. Holzforschung, 2007, 61, 175-181.	0.9	46
13	A fully-homogenized multiphysics model for a reversible solid oxide cell stack. International Journal of Hydrogen Energy, 2019, 44, 23330-23347.	3.8	42
14	Influence of porosity on mechanical properties of tetragonal stabilized zirconia. Journal of the European Ceramic Society, 2018, 38, 1720-1735.	2.8	41
15	Influence of temperature and atmosphere on the strength and elastic modulus of solid oxide fuel cell anode supports. Journal of Power Sources, 2016, 311, 1-12.	4.0	38
16	A three dimensional multiphysics model of a solid oxide electrochemical cell: A tool for understanding degradation. International Journal of Hydrogen Energy, 2018, 43, 11913-11931.	3.8	38
17	Multiscale modeling of degradation of full solid oxide fuel cell stacks. International Journal of Hydrogen Energy, 2021, 46, 27709-27730.	3.8	32
18	SOFC stacks for mobile applications with excellent robustness towards thermal stresses. International Journal of Hydrogen Energy, 2020, 45, 29201-29211.	3.8	31

Henrik Lund Frandsen

#	Article	IF	CITATIONS
19	The sintering behavior of close-packed spheres. Scripta Materialia, 2012, 67, 81-84.	2.6	28
20	Modeling kinetics of distortion in porous bi-layered structures. Journal of the European Ceramic Society, 2013, 33, 1297-1305.	2.8	27
21	Sintering of Multilayered Porous Structures: Part <scp>II</scp> –Experiments and Model Applications. Journal of the American Ceramic Society, 2013, 96, 2666-2673.	1.9	27
22	Multi-scale modeling of shape distortions during sintering of bi-layers. Computational Materials Science, 2014, 88, 28-36.	1.4	27
23	Sintering of Multilayered Porous Structures: Part lâ€Constitutive Models. Journal of the American Ceramic Society, 2013, 96, 2657-2665.	1.9	26
24	Modeling Sintering of Multilayers Under Influence of Gravity. Journal of the American Ceramic Society, 2013, 96, 80-89.	1.9	26
25	Improving the fracture toughness of stabilized zirconia-based solid oxide cells fuel electrode supports: Effects of type and concentration of stabilizer(s). Journal of the European Ceramic Society, 2020, 40, 5670-5682.	2.8	26
26	Implementation of sorption hysteresis in multi-Fickian moisture transport. Holzforschung, 2007, 61, 693-701.	0.9	25
27	Strain in the mesoscale kinetic Monte Carlo model for sintering. Computational Materials Science, 2014, 82, 293-297.	1.4	25
28	Localized carbon deposition in solid oxide electrolysis cells studied by multiphysics modeling. Journal of Power Sources, 2018, 394, 102-113.	4.0	25
29	Residual stresses and strength of multilayer tape cast solid oxide fuel and electrolysis half-cells. Journal of Power Sources, 2015, 288, 243-252.	4.0	24
30	Production of a monolithic fuel cell stack with high power density. Nature Communications, 2022, 13, 1263.	5.8	24
31	Curvature and Strength of Ni-YSZ Solid Oxide Half-Cells After Redox Treatments. Journal of Fuel Cell Science and Technology, 2010, 7, .	0.8	23
32	Stress analysis and fail-safe design of bilayered tubular supported ceramic membranes. Journal of Membrane Science, 2014, 453, 253-262.	4.1	23
33	Creep behaviour of porous metal supports for solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21569-21580.	3.8	23
34	Strength of Anode‧upported Solid Oxide Fuel Cells. Fuel Cells, 2011, 11, 682-689.	1.5	22
35	Modelling of local mechanical failures in solid oxide cell stacks. Applied Energy, 2021, 293, 116901.	5.1	22
36	Strength characterization of tubular ceramic materials by flexure of semi-cylindrical specimens. Journal of the European Ceramic Society, 2014, 34, 1423-1432.	2.8	21

#	Article	IF	CITATIONS
37	Efficient modeling of metallic interconnects for thermo-mechanical simulation of SOFC stacks: Homogenized behaviors and effect of contact. International Journal of Hydrogen Energy, 2016, 41, 6433-6444.	3.8	21
38	<i>In situ</i> time-of-flight neutron imaging of NiO–YSZ anode support reduction under influence of stress. Journal of Applied Crystallography, 2016, 49, 1674-1681.	1.9	21
39	Modeling the Mechanical Integrity of Generic Solid Oxide Cell Stack Designs Exposed to Longâ€ŧerm Operation. Fuel Cells, 2019, 19, 96-109.	1.5	21
40	Fracture properties of nickel-based anodes for solid oxide fuel cells. Journal of the European Ceramic Society, 2010, 30, 3173-3179.	2.8	20
41	Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions. International Journal of Solids and Structures, 2016, 78-79, 38-46.	1.3	20
42	Mechanical reliability of geometrically imperfect tubular oxygen transport membranes. Journal of Membrane Science, 2014, 470, 80-89.	4.1	18
43	Effect of stress on NiO reduction in solid oxide fuel cells: a new application of energy-resolved neutron imaging. Journal of Applied Crystallography, 2015, 48, 401-408.	1.9	18
44	Determination of the bonding strength in solid oxide fuel cells' interfaces by Schwickerath crack initiation test. Journal of the European Ceramic Society, 2017, 37, 3565-3578.	2.8	18
45	Numerical evaluation of micro-structural parameters of porous supports in metal-supported solid oxide fuel cells. Journal of Power Sources, 2015, 273, 1006-1015.	4.0	17
46	Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imaging. Journal of Power Sources, 2017, 340, 167-175.	4.0	17
47	Investigation of a Spinelâ€forming Cuâ€Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unit. Fuel Cells, 2017, 17, 730-734.	1.5	17
48	High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports. Journal of Power Sources, 2014, 258, 195-203.	4.0	16
49	Development of a Novel Ceramic Support Layer for Planar Solid Oxide Cells. Fuel Cells, 2014, 14, 153-161.	1.5	16
50	Investigation of the bonding strength and bonding mechanisms of SOFCs interconnector–electrode interfaces. Materials Letters, 2016, 162, 250-253.	1.3	16
51	Electrothermally balanced operation of solid oxide electrolysis cells. Journal of Power Sources, 2022, 523, 231040.	4.0	16
52	Durability Study of SOFCs Under Cycling Current Load Conditions. Fuel Cells, 2009, 9, 814-822.	1.5	15
53	Weibull statistics effective area and volume in the ball-on-ring testing method. Mechanics of Materials, 2014, 73, 28-37.	1.7	15
54	A modeling study of lifetime and performance improvements of solid oxide fuel cell by reversed pulse operation. Journal of Power Sources, 2022, 523, 231048.	4.0	14

Henrik Lund Frandsen

#	Article	IF	CITATIONS
55	Finite Element Modeling of Camber Evolution During Sintering of Bilayer Structures. Journal of the American Ceramic Society, 2014, 97, 2965-2972.	1.9	13
56	Investigation of electrophoretic deposition as a method for coating complex shaped steel parts in solid oxide cell stacks. Surface and Coatings Technology, 2019, 380, 125093.	2.2	13
57	Fast and stable approximation of laminar and turbulent flows in channels by Darcy's Law. AEJ - Alexandria Engineering Journal, 2021, 60, 2155-2165.	3.4	13
58	Computation of Effective Steadyâ€State Creep of Porous Ni–YSZ Composites with Reconstructed Microstructures. Journal of the American Ceramic Society, 2015, 98, 2873-2880.	1.9	12
59	Numerical evaluation of oxide growth in metallic support microstructures of Solid Oxide Fuel Cells and its influence on mass transport. Journal of Power Sources, 2015, 297, 388-399.	4.0	12
60	Improving the interface adherence at sealings in solid oxide cell stacks. Journal of Materials Research, 2019, 34, 1167-1178.	1.2	12
61	Tetragonal phase stability maps of ceria-yttria co-doped zirconia: From powders to sintered ceramics. Ceramics International, 2020, 46, 9396-9405.	2.3	12
62	Modeling the Microstructural Evolution During Constrained Sintering. Journal of the American Ceramic Society, 2015, 98, 3490-3495.	1.9	11
63	Modeling constrained sintering of bi-layered tubular structures. Journal of the European Ceramic Society, 2015, 35, 941-950.	2.8	10
64	Secondary creep of porous metal supports for solid oxide fuel cells by a CDM approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 691, 155-161.	2.6	10
65	Double Torsion testing of thin porous zirconia supports for energy applications: Toughness and slow crack growth assessment. Journal of the European Ceramic Society, 2020, 40, 3191-3199.	2.8	10
66	The small displacement elastic solution to the ball-on-ring testing method. Mechanics of Materials, 2012, 55, 33-40.	1.7	9
67	Numerical study of corrosion crack opening. Structure and Infrastructure Engineering, 2008, 4, 381-391.	2.0	8
68	On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes. Journal of the Electrochemical Society, 2017, 164, F748-F758.	1.3	8
69	Transient deformational properties of high temperature alloys used in solid oxide fuel cell stacks. Journal of Power Sources, 2017, 351, 8-16.	4.0	8
70	Mechanical Properties of Supports and Half ells for Solid Oxide Electrolysis Influenced by Aluminaâ€Zirconia Composites. Fuel Cells, 2017, 17, 132-143.	1.5	8
71	Fast relaxation of stresses in solid oxide cells through reduction. Part I: Macro-stresses in the cell layers. International Journal of Hydrogen Energy, 2021, 46, 1548-1559.	3.8	7
72	Investigating phase behavior and structural changes in NiO/Ni-YSZ composite with monochromatic in-situ 2D and static 3D neutron imaging. Physica B: Condensed Matter, 2018, 551, 24-28.	1.3	6

#	Article	IF	CITATIONS
73	Interface Fracture Energy of Contact Layers in a Solid Oxide Cell Stack. ACS Applied Energy Materials, 2020, 3, 2372-2385.	2.5	6
74	Production and Reliability Oriented SOFC Cell and Stack Design. ECS Transactions, 2017, 78, 2231-2249.	0.3	5
75	Enhancing the Robustness of Brittle Solid Oxide Cell Stack Components. ECS Transactions, 2019, 91, 2201-2211.	0.3	5
76	Development of High Temperature Mechanical Rig for Characterizing the Viscoplastic Properties of Alloys Used in Solid Oxide Cells. Journal of Testing and Evaluation, 2018, 46, 1918-1929.	0.4	5
77	Influence of pore former on porosity and mechanical properties of Ce0.9Gd0.1O1.95 electrolytes for flue gas purification. Ceramics International, 2016, 42, 4546-4555.	2.3	4
78	Improved Robustness and Low Area Specific Resistance with Novel Contact Layers for the Solid Oxide Cell Air Electrode. ECS Transactions, 2019, 91, 2225-2232.	0.3	4
79	Strength and hydrothermal stability of NiO–stabilized zirconia solid oxide cells fuel electrode supports. Journal of the European Ceramic Society, 2021, 41, 4206-4216.	2.8	4
80	High toughness well conducting contact layers for solid oxide cell stacks by reactive oxidative bonding. Journal of the European Ceramic Society, 2021, 41, 2699-2708.	2.8	3
81	Performance Analysis of Ammonia in Solid Oxide Fuel Cells. ECS Transactions, 2021, 103, 185-199.	0.3	2
82	Fracture toughness of reactive bonded Co–Mn and Cu–Mn contact layers after long-term aging. Ceramics International, 2022, 48, 20699-20711.	2.3	2
83	Determination of the Resistance of Cone-Shaped Solid Electrodes. Journal of the Electrochemical Society, 2017, 164, E3035-E3039.	1.3	1
84	Recent Highlights of Solid Oxide Fuel Cell and Electrolysis Research at DTU Energy. ECS Transactions, 2021, 103, 327-336.	0.3	1
85	Torsional behaviour of a glass-ceramic joined alumina coated Crofer 22 APU steel. Ceramics International, 2022, 48, 25368-25373.	2.3	1
86	Recent Highlights of Solid Oxide Fuel Cell and Electrolysis Research at DTU Energy. ECS Meeting Abstracts, 2021, MA2021-03, 199-199.	0.0	0
87	Performance Analysis of Ammonia in Solid Oxide Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-03, 30-30.	0.0	0
88	Ammonia Driven Reversible Solid Oxide Cell As Large-Scale Grid Energy Storage System. ECS Meeting Abstracts, 2022, MA2022-01, 504-504.	0.0	0
89	Stack-Scale Modeling of Ammonia-Fueled Solid Oxide Fuel Cell. ECS Meeting Abstracts, 2022, MA2022-01, 1960-1960.	0.0	0
90	Stable, asymmetric, tubular oxygen transport membranes of (Sc2O3)0.10(Y2O3)0.01(ZrO2)0.89 – LaCr0.85Cu0.10Ni0.05O3-δ. Open Ceramics, 2022, 11, 100292.	1.0	0