
Patricia Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597771/publications.pdf Version: 2024-02-01

ΡΑΤΡΙCIA SILVA

#	Article	IF	CITATIONS
1	Hydroalcoholic Extract of Myrcia bella Loaded into a Microemulsion System: A Study of Antifungal and Mutagenic Potential. Planta Medica, 2022, 88, 405-415.	1.3	5
2	Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex. Journal of Microencapsulation, 2022, 39, 61-71.	2.8	0
3	Solid lipid nanoparticles loaded with curcumin: development and <i>in vitro</i> toxicity against CT26 cells. Nanomedicine, 2022, 17, 167-179.	3.3	8
4	Discovery of (E)-4-styrylphenoxy-propanamide: A dual PPARα/γ partial agonist that regulates high-density lipoprotein-cholesterol levels, modulates adipogenesis, and improves glucose tolerance in diet-induced obese mice. Bioorganic Chemistry, 2022, 120, 105600.	4.1	0
5	Antifungal activity and toxicity of anÂoctyl gallate-loaded nanostructured lipid system on cells and nonmammalian animals. Future Microbiology, 2022, 17, 281-291.	2.0	1
6	Detection of SARS-CoV-2 virus via dynamic light scattering using antibody-gold nanoparticle bioconjugates against viral spike protein. Talanta, 2022, 243, 123355.	5.5	16
7	Influence of particle size on the SARS-CoV-2 spike protein detection using IgG-capped gold nanoparticles and dynamic light scattering. Materials Today Chemistry, 2022, 25, 100924.	3.5	15
8	Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Critical Reviews in Microbiology, 2021, 47, 79-90.	6.1	35
9	Rhamnolipid-Based Liposomes as Promising Nano-Carriers for Enhancing the Antibacterial Activity of Peptides Derived from Bacterial Toxin-Antitoxin Systems. International Journal of Nanomedicine, 2021, Volume 16, 925-939.	6.7	13
10	Highlights Regarding the Use of Metallic Nanoparticles against Pathogens Considered a Priority by the World Health Organization. Current Medicinal Chemistry, 2021, 28, 1906-1956.	2.4	8
11	[10]-Gingerol-Loaded Nanoemulsion and its Biological Effects on Triple-Negative Breast Cancer Cells. AAPS PharmSciTech, 2021, 22, 157.	3.3	13
12	Growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) against Mycobacterium tuberculosis in vitro and in vivo. Tuberculosis, 2021, 128, 102087.	1.9	2
13	Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. Pharmaceutics, 2021, 13, 773.	4.5	28
14	Breast Cancer Targeting of a Drug Delivery System through Postsynthetic Modification of Curcumin@N ₃ -bio-MOF-100 via Click Chemistry. Inorganic Chemistry, 2021, 60, 11739-11744.	4.0	57
15	Nanotechnological strategies for systemic microbial infections treatment: A review. International Journal of Pharmaceutics, 2020, 589, 119780.	5.2	29
16	Poly-ε-caprolactone Nanoparticles Loaded with 4-Nerolidylcatechol (4-NC) for Growth Inhibition of Microsporum canis. Antibiotics, 2020, 9, 894.	3.7	8
17	The influence of NLC composition on curcumin loading under a physicochemical perspective and in vitro evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125070.	4.7	29
18	Enhanced proton conductivity in a layered coordination polymer. Chemical Science, 2020, 11, 6305-6311.	7.4	26

PATRICIA SILVA

#	Article	IF	CITATIONS
19	Copper(II) biocompatible coordination solids as potential platforms for diclofenac delivery systems. Journal of Solid State Chemistry, 2020, 289, 121479.	2.9	3
20	New Silver(I) Coordination Compound Loaded into Polymeric Nanoparticles as a Strategy to Improve <i>In Vitro</i> Anti- <i>Helicobacter pylori</i> Activity. Molecular Pharmaceutics, 2020, 17, 2287-2298.	4.6	17
21	Incorporation of Nonyl 3,4-Dihydroxybenzoate Into Nanostructured Lipid Systems: Effective Alternative for Maintaining Anti-Dermatophytic and Antibiofilm Activities and Reducing Toxicity at High Concentrations. Frontiers in Microbiology, 2020, 11, 1154.	3.5	10
22	Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. Journal of Nanobiotechnology, 2020, 18, 43.	9.1	98
23	Cyto-genotoxic evaluation of novel anti-tubercular copper (II) complexes containing isoniazid-based ligands. Regulatory Toxicology and Pharmacology, 2020, 113, 104653.	2.7	4
24	Improved in vitro and in vivo Anti-Candida albicans Activity of Cymbopogon nardus Essential Oil by Its Incorporation into a Microemulsion System. International Journal of Nanomedicine, 2020, Volume 15, 10481-10497.	6.7	14
25	Formulating SLN and NLC as Innovative Drug Delivery Systems for Non-Invasive Routes of Drug Administration. Current Medicinal Chemistry, 2020, 27, 3623-3656.	2.4	12
26	Intravaginal Delivery of Syngonanthus nitens (Bong.) Ruhland Fraction Based on a Nanoemulsion System Applied to Vulvovaginal Candidiasis Treatment. Journal of Biomedical Nanotechnology, 2019, 15, 1072-1089.	1.1	29
27	A Novel Antifungal System With Potential for Prolonged Delivery of Histatin 5 to Limit Growth of Candida albicans. Frontiers in Microbiology, 2019, 10, 1667.	3.5	18
28	Antifungal Activity of a Hydroethanolic Extract From Astronium urundeuva Leaves Against Candida albicans and Candida glabrata. Frontiers in Microbiology, 2019, 10, 2642.	3.5	20
29	In vitro and in vivo anti-Helicobacter pylori activity of Casearia sylvestris leaf derivatives. Journal of Ethnopharmacology, 2019, 233, 1-12.	4.1	39
30	Determination of in vitro absorption in Caco-2 monolayers of anticancer Ru(II)-based complexes acting as dual human topoisomerase and PARP inhibitors. BioMetals, 2019, 32, 89-100.	4.1	14
31	Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action - Review. Current Medicinal Chemistry, 2019, 26, 2108-2146.	2.4	27
32	STUDIES ON THE THERMAL BEHAVIOR OF POLYNUCLEAR PALLADIUM(II) COMPOUNDS CONTAINING PYRAZOLATO LIGANDS. Brazilian Journal of Thermal Analysis, 2019, 8, .	0.0	0
33	A Nanostructured Lipid System to Improve the Oral Bioavailability of Ruthenium(II) Complexes for the Treatment of Infections Caused by Mycobacterium tuberculosis. Frontiers in Microbiology, 2018, 9, 2930.	3.5	5
34	Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. International Journal of Nanomedicine, 2018, Volume 13, 1179-1213.	6.7	191
35	Potential of the association of dodecyl gallate with nanostructured lipid system as a treatment for paracoccidioidomycosis: In vitro and in vivo efficacy and toxicity. International Journal of Pharmaceutics, 2018, 547, 630-636.	5.2	13
36	Design, Synthesis, and Characterization of N-Oxide-Containing Heterocycles with in Vivo Sterilizing Antitubercular Activity. Journal of Medicinal Chemistry, 2017, 60, 8647-8660.	6.4	43

PATRICIA SILVA

#	Article	IF	CITATIONS
37	New antimycobacterial agents in the pre-clinical phase or beyond: recent advances in patent literature (2001–2016). Expert Opinion on Therapeutic Patents, 2017, 27, 269-282.	5.0	12
38	Structural Features and the Anti-Inflammatory Effect of Green Tea Extract-Loaded Liquid Crystalline Systems Intended for Skin Delivery. Polymers, 2017, 9, 30.	4.5	20
39	Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis . Drug Design, Development and Therapy, 2017, Volume11, 909-921.	4.3	52
40	In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis. International Journal of Molecular Sciences, 2016, 17, 745.	4.1	27
41	Novel Zinc(II) Complexes [Zn(atc-Et)2] and [Zn(atc-Ph)2]: In Vitro and in Vivo Antiproliferative Studies. International Journal of Molecular Sciences, 2016, 17, 781.	4.1	21
42	Nanotechnology-Based Drug Delivery Systems for Treatment of Tuberculosis—A Review. Journal of Biomedical Nanotechnology, 2016, 12, 241-260.	1.1	42
43	A Lamellar Coordination Polymer with Remarkable Catalytic Activity. Chemistry - A European Journal, 2016, 22, 13136-13146.	3.3	23
44	Nanostructured lipid system as a strategy to improve the anti-Candida albicans activity of Astronium sp International Journal of Nanomedicine, 2015, 10, 5081.	6.7	49
45	A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes. Molecules, 2015, 20, 22534-22545.	3.8	13
46	Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015, 44, 6774-6803.	38.1	766
47	Recent Advances in Nanoparticle Carriers for Coordination Complexes. Current Topics in Medicinal Chemistry, 2015, 15, 287-297.	2.1	20
48	Nanotechnology-based drug delivery systems and herbal medicines: a review. International Journal of Nanomedicine, 2014, 9, 1.	6.7	258
49	Antimicrobial activity of natural products against Helicobacter pylori: a review. Annals of Clinical Microbiology and Antimicrobials, 2014, 13, 54.	3.8	25
50	Nanotechnological Strategies for Vaginal Administration of Drugs—A Review. Journal of Biomedical Nanotechnology, 2014, 10, 2218-2243.	1.1	31
51	Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. Journal of Materials Chemistry C, 2014, 2, 3311.	5.5	44
52	Coordination polymers based on a glycine-derivative ligand. CrystEngComm, 2014, 16, 8119-8137.	2.6	5
53	Nanostructured Lipid Systems as a Strategy to Improve the in Vitro Cytotoxicity of Ruthenium(II) Compounds. Molecules, 2014, 19, 5999-6008.	3.8	20
54	Chloramphenicol·cyclodextrin inclusion compounds: co-dissolution and mechanochemical preparations and antibacterial action. CrystEngComm, 2013, 15, 2822.	2.6	63

PATRICIA SILVA

#	Article	IF	CITATIONS
55	Structural Diversity of Lanthanum–Organic Frameworks Based on 1,4-Phenylenebis(methylene)diphosphonic Acid. Crystal Growth and Design, 2013, 13, 543-560.	3.0	19
56	Synthesis, crystal structure and photoluminescence of a binuclear complex of europium(III) containing 3,5-dicarboxypyrazolate and succinate. Polyhedron, 2013, 54, 1-7.	2.2	22
57	Supramolecular assemblies and magnetic behaviors of the M(II)/p-aminopyridine/malonate (M=Ni, Mn,) Tj ETQq1 I	1 0.78431 2.2	4 rgBT /Ove
58	Structural Elucidation of a Calcined Layered Lanthanide-Organic Framework Comprising an Unprecedented Organic Polymer. Journal of Chemical Crystallography, 2013, 43, 165-170.	1.1	1
59	Metal–Organic Frameworks Assembled From Erbium Tetramers and 2,5-Pyridinedicarboxylic Acid. Crystal Growth and Design, 2013, 13, 2607-2617.	3.0	25
60	Photoluminescent Metal–Organic Frameworks – Rapid Preparation, Catalytic Activity, and Framework Relationships. European Journal of Inorganic Chemistry, 2013, 2013, 5576-5591.	2.0	11
61	Redetermination at 180â€K of a layered lanthanide–organic framework. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, m294-m295.	0.2	3
62	Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions, 2011, 40, 321-330.	3.3	441
63	Thermal Transformation of a Layered Multifunctional Network into a Metal–Organic Framework Based on a Polymeric Organic Linker. Journal of the American Chemical Society, 2011, 133, 15120-15138.	13.7	59
64	Synthesis, characterization, and investigation of the thermal behavior of Cu(II) pyrazolyl complexes. Journal of Thermal Analysis and Calorimetry, 2011, 106, 495-499.	3.6	3
65	TAPPING PILOT HOLE: MECHANICAL ANALYSIS OF SHEEP VERTEBRA AND THE ARTIFICIAL BONE MODEL. Revista Brasileira De Ortopedia, 2010, 45, 290-294.	0.6	0
66	EFFECT OF PILOT HOLE TAPPING ON PULLOUT STRENGTH AND INSERTION TORQUE OF DUAL CORE PEDICLE SCREWS. Revista Brasileira De Ortopedia, 2010, 45, 565-568.	0.6	0
67	<i>catena</i> -Poly[[triaquachlorido-î¼ ₃ -malonato-cerium(III)] hemihydrate]. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m1514-m1515.	0.2	6
68	Multi-functional rare-earth hybrid layered networks: photoluminescence and catalysis studies. Journal of Materials Chemistry, 2009, 19, 2618.	6.7	90
69	BIOMECHANICAL EVALUATION OF THE INFLUENCE OF CERVICAL SCREWS TAPPING AND DESIGN. Revista Brasileira De Ortopedia, 2009, 44, 415-419.	0.6	3
70	Pyrazolyl coordination polymers of cadmium(II). Inorganic Chemistry Communication, 2006, 9, 235-238.	3.9	24
71	Biological Properties of Extracts from Byrsonima Species in Microemulsions. Revista Brasileira De Farmacognosia, 0, , 1.	1.4	0