List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597727/publications.pdf Version: 2024-02-01

IULIO HUEPTA-ESDINO

#	Article	IF	CITATIONS
1	Three co-located resistance genes confer resistance to leaf rust and stripe rust in wheat variety Borlaug 100. Crop Journal, 2022, 10, 490-497.	2.3	10
2	Molecular Characterization of Genomic Regions for Adult Plant Resistance to Stem Rust in a Spring Wheat Mapping Population. Plant Disease, 2022, 106, 439-450.	0.7	1
3	Genome-Wide Association Mapping Indicates Quantitative Genetic Control of Spot Blotch Resistance in Bread Wheat and the Favorable Effects of Some Spot Blotch Loci on Grain Yield. Frontiers in Plant Science, 2022, 13, 835095.	1.7	9
4	ACCIÓN GÉNICA Y GENES QUE OTORGAN RESISTENCIA A ROYA DE LA HOJA EN TRIGO CRISTALINO. Revista Fitotecnia Mexicana, 2022, 45, 83.	0.0	0
5	Quantitative trait loci mapping reveals the complexity of adult plant resistance to leaf rust in spring wheat †̃Copio'. Crop Science, 2022, 62, 1037-1050.	0.8	5
6	BACOREHUIS F2015, NUEVA VARIEDAD DE TRIGO HARINERO PARA ÃREAS DE RIEGO EN MÉXICO. Revista Fitotecnia Mexicana, 2022, 44, 693.	0.0	0
7	Adult plant stem rust resistance in durum wheat Glossy Huguenot: mapping, marker development and validation. Theoretical and Applied Genetics, 2022, 135, 1541-1550.	1.8	11
8	Wheat Rusts: Current Status, Prospects of Genetic Control and Integrated Approaches to Enhance Resistance Durability. , 2022, , 125-141.		7
9	Achieving Genetic Gains in Practice. , 2022, , 97-123.		1
10	Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines. Field Crops Research, 2022, 284, 108585.	2.3	19
11	Elucidating the genetics of grain yield and stress-resilience in bread wheat using a large-scale genome-wide association mapping study with 55,568 lines. Scientific Reports, 2021, 11, 5254.	1.6	11
12	Identification of Two New Loci for Adult Plant Resistance to Leaf Rust and Stripe Rust in the Chinese Wheat Variety â€~Neimai 836'. Plant Disease, 2021, , PDIS12202654RE.	0.7	1
13	Target Population of Environments for Wheat Breeding in India: Definition, Prediction and Genetic Gains. Frontiers in Plant Science, 2021, 12, 638520.	1.7	26
14	RÃO BRAVO C2018, NUEVA VARIEDAD DE TRIGO MACARRONERO PARA ÃREAS DE RIEGO EN MÉXICO. Revista Fitotecnia Mexicana, 2021, 44, 269.	0.0	0
15	NOHELY F2018, NUEVA VARIEDAD DE TRIGO HARINERO PARA EL VALLE DE MEXICALI Y NORTE DE SONORA, MÉXICO. Revista Fitotecnia Mexicana, 2021, 44, 273.	0.0	1
16	Fungicides evaluation againts yellow rust (Puccinia striiformis f. sp. hordei) in six barley cultivars. Revista Mexicana De Fitopatologia, 2021, 39, .	0.2	0
17	Juvenile Heat Tolerance in Wheat for Attaining Higher Grain Yield by Shifting to Early Sowing in October in South Asia. Genes, 2021, 12, 1808.	1.0	8
18	Four Consistent Loci Confer Adult Plant Resistance to Leaf Rust in the Durum Wheat Lines Heller#1 and Dunkler. Phytopathology, 2020, 110, 892-899.	1.1	25

#	Article	IF	CITATIONS
19	Genome-Wide Mapping of Adult Plant Resistance to Leaf Rust and Stripe Rust in CIMMYT Wheat Line Arableu#1. Plant Disease, 2020, 104, 1455-1464.	0.7	17
20	Genome-wide mapping and allelic fingerprinting provide insights into the genetics of resistance to wheat stripe rust in India, Kenya and Mexico. Scientific Reports, 2020, 10, 10908.	1.6	8
21	Adult Plant Slow Rusting Genes Confer High Levels of Resistance to Rusts in Bread Wheat Cultivars From Mexico. Frontiers in Plant Science, 2020, 11, 824.	1.7	49
22	Haplotype-Based, Genome-Wide Association Study Reveals Stable Genomic Regions for Grain Yield in CIMMYT Spring Bread Wheat. Frontiers in Genetics, 2020, 11, 589490.	1.1	29
23	Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields. Frontiers in Plant Science, 2020, 11, 580136.	1.7	7
24	Genomic Selection for Grain Yield in the CIMMYT Wheat Breeding Program—Status and Perspectives. Frontiers in Plant Science, 2020, 11, 564183.	1.7	27
25	Grain yield genetic gains and changes in physiological related traits for CIMMYT's High Rainfall Wheat Screening Nursery tested across international environments. Field Crops Research, 2020, 249, 107742.	2.3	34
26	Nutritional quality characterization of a set of durum wheat landraces from Iran and Mexico. LWT - Food Science and Technology, 2020, 124, 109198.	2.5	20
27	Fifty years of semi-dwarf spring wheat breeding at CIMMYT: Grain yield progress in optimum, drought and heat stress environments. Field Crops Research, 2020, 250, 107757.	2.3	64
28	RESISTENCIA PARCIAL Y ESPECÃFICA A ROYA DEL TALLO EN LA LINEA AVANZADA DE TRIGO HARINERO â€~KIJILâ€ Revista Fitotecnia Mexicana, 2020, 42, 411-418.	™ 0.0	0
29	BAROBAMPO C2015, NUEVA VARIEDAD DE TRIGO CRISTALINO PARA ÃREAS DE RIEGO EN MÉXICO. Revista Fitotecnia Mexicana, 2020, 43, 245.	0.0	0
30	RELACIÓN ENTRE EL GEN Lr67 DE RESISTENCIA A ROYA DE LA HOJA Y EL GEN Rht-D1 DE ENANISMO DEL TRIGO. Revista Fitotecnia Mexicana, 2020, 43, 143.	0.0	0
31	NORESTE F2018: NUEVA VARIEDAD DE TRIGO HARINERO PARA ÂREAS DE RIEGO EN MÉXICO. Revista Fitotecnia Mexicana, 2020, 43, 483.	0.0	0
32	Chemical treatment to wheat seed to reduce the incidence of bacteria. Revista Mexicana De Fitopatologia, 2020, 38, .	0.2	1
33	CONASIST C2015, NUEVA VARIEDAD DE TRIGO MACARRONERO (Triticum durum Desf.) PARA SIEMBRAS DE RIEGO EN MÉXICO. Revista Fitotecnia Mexicana, 2020, 43, 127.	0.0	0
34	TEXCOCO F2016, NUEVA VARIEDAD DE TRIGO HARINERO PARA SIEMBRAS DE SECANO EN MÉXICO. Revista Fitotecnia Mexicana, 2020, 43, 351.	0.0	0
35	INTROGRESIÓN DE LOS GENES DE RESISTENCIA A ROYA AMARILLA Yr5a Y Yr15 EN EL CULTIVAR DE TRIGO HARINERO BORLAUG 100. Revista Fitotecnia Mexicana, 2020, 43, 275.	0.0	0
36	Two Main Stripe Rust Resistance Genes Identified in Synthetic-Derived Wheat Line Soru#1. Phytopathology, 2019, 109, 120-126.	1.1	12

#	Article	IF	CITATIONS
37	Identification and mapping of two adult plant leaf rust resistance genes in durum wheat. Molecular Breeding, 2019, 39, 1.	1.0	4
38	Disease Resistance in Wheat: Present Status and Future Prospects. , 2019, , 61-81.		6
39	Genetics of Greenbug Resistance in Synthetic Hexaploid Wheat Derived Germplasm. Frontiers in Plant Science, 2019, 10, 782.	1.7	12
40	High-Density Mapping of Triple Rust Resistance in Barley Using DArT-Seq Markers. Frontiers in Plant Science, 2019, 10, 467.	1.7	14
41	Preliminary characterization for grain quality traits and high and low molecular weight glutenins subunits composition of durum wheat landraces from Iran and Mexico. Journal of Cereal Science, 2019, 88, 47-56.	1.8	14
42	Stripe rust resistance in wild wheat Aegilops tauschii Coss.: genetic structure and inheritance in synthetic allohexaploid Triticum wheat lines. Genetic Resources and Crop Evolution, 2019, 66, 909-920.	0.8	7
43	High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theoretical and Applied Genetics, 2019, 132, 1705-1720.	1.8	70
44	Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nature Genetics, 2019, 51, 1530-1539.	9.4	216
45	Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theoretical and Applied Genetics, 2019, 132, 177-194.	1.8	78
46	Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Frontiers of Agricultural Science and Engineering, 2019, 6, 210.	0.9	40
47	GENÉTICA DE LA RESISTENCIA A ROYA AMARILLA CAUSADA POR Puccinia striiformis f. sp. tritici W. EN TRES GENOTIPOS DE TRIGO (Triticum aestivum L.). Revista Fitotecnia Mexicana, 2019, 42, 31-38.	0.0	2
48	ELIA M2016, NUEVA VARIEDAD DE TRIGO HARINERO PARA RIEGO RESTRINGIDO EN EL BAJÃO, MÉXICO. Revista Fitotecnia Mexicana, 2019, 42, 79-81.	^a 0.0	0
49	Potential for re-emergence of wheat stem rust in the United Kingdom. Communications Biology, 2018, 1, 13.	2.0	107
50	Characterization of Adult Plant Resistance to Leaf Rust and Stripe Rust in Indian Wheat Cultivar â€~New Pusa 876'. Crop Science, 2018, 58, 630-638.	0.8	17
51	Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theoretical and Applied Genetics, 2018, 131, 1405-1422.	1.8	101
52	Characterization of Leaf Rust and Stripe Rust Resistance in Spring Wheat â€~Chilero'. Plant Disease, 2018, 102, 421-427.	0.7	33
53	Milling, processing and end-use quality traits of CIMMYT spring bread wheat germplasm under drought and heat stress. Field Crops Research, 2018, 215, 104-112.	2.3	62
54	Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line â€~Arula'. Australian Journal of Crop Science, 2018, 12, 1023-1033.	0.1	43

#	Article	IF	CITATIONS
55	Relationship between the number of partial resistance genes and the response to leaf rust in wheat genotypes. Chilean Journal of Agricultural Research, 2018, 78, 400-408.	0.4	6
56	Identification and Validation of a Common Stem Rust Resistance Locus in Two Bi-parental Populations. Frontiers in Plant Science, 2018, 9, 1788.	1.7	28
57	Prospects and Challenges of Applied Genomic Selection—A New Paradigm in Breeding for Grain Yield in Bread Wheat. Plant Genome, 2018, 11, 180017.	1.6	65
58	Genetic Gains for Grain Yield in CIMMYT's Semiâ€Arid Wheat Yield Trials Grown in Suboptimal Environments. Crop Science, 2018, 58, 1890-1898.	0.8	69
59	Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum). PLoS ONE, 2018, 13, e0203283.	1.1	17
60	Assessing Genetic Diversity to Breed Competitive Biofortified Wheat With Enhanced Grain Zn and Fe Concentrations. Frontiers in Plant Science, 2018, 9, 1971.	1.7	79
61	COMPARACIÓN DEL RENDIMIENTO DE TRIGOS HARINEROS Y CRISTALINOS A TRAVÉS DE DIFERENTES AMBIENTES DE RIEGO. Revista Fitotecnia Mexicana, 2018, 41, 159-166.	0.0	3
62	MARTÃNEZ C2016, NUEVA VARIEDAD DE TRIGO CRISTALINO PARA MEXICALI, BAJA CALIFORNIA Y SAN LUIS RÃO COLORADO, SONORA. Revista Fitotecnia Mexicana, 2018, 41, 217-218.	0.0	0
63	Agresividad de aislados de Bipolaris sorokiniana y Alternaria alternata en variedades de trigo en MA©xico. Revista Mexicana De Fitopatologia, 2018, 36, .	0.2	0
64	GENÉTICA DE LA RESISTENCIA A LA ROYA DEL TALLO EN PLANTA ADULTA EN GENOTIPOS ÉLITE DE TRIGO HARINERO. Revista Fitotecnia Mexicana, 2018, 41, 385-392.	0.0	1
65	Ñipal F2016: variedad de trigo harinero para el Distrito Rural 014. Revista Mexicana De Ciencias Agricolas, 2018, 9, 1823-1825.	0.0	0
66	Genetic Yield Gains In CIMMYT's International Elite Spring Wheat Yield Trials By Modeling The Genotype × Environment Interaction. Crop Science, 2017, 57, 789-801.	0.8	89
67	Genomic and pedigree-based prediction for leaf, stem, and stripe rust resistance in wheat. Theoretical and Applied Genetics, 2017, 130, 1415-1430.	1.8	99
68	Genetic improvement of grain quality traits for CIMMYT semi-dwarf spring bread wheat varieties developed during 1965–2015: 50 years of breeding. Field Crops Research, 2017, 210, 192-196.	2.3	48
69	First Detection of Virulence in <i>Puccinia striiformis</i> f. sp. <i>tritici</i> to Wheat Resistance Genes <i>Yr10</i> and <i>Yr24</i> (<i>=Yr26</i>) in Mexico. Plant Disease, 2017, 101, 1676-1676.	0.7	4
70	Genetic analysis and mapping of adult plant resistance loci to leaf rust in durum wheat cultivar Bairds. Theoretical and Applied Genetics, 2017, 130, 609-619.	1.8	32
71	Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat. Field Crops Research, 2017, 214, 373-377.	2.3	61
72	Quantitative trait loci for resistance to stripe rust of wheat revealed using global field nurseries and opportunities for stacking resistance genes. Theoretical and Applied Genetics, 2017, 130, 2617-2635.	1.8	27

#	Article	IF	CITATIONS
73	Genetic Analysis of Resistance to Wheat Rusts. Methods in Molecular Biology, 2017, 1659, 137-149.	0.4	3
74	Identification and Mapping of Adult Plant Resistance Loci to Leaf Rust and Stripe Rust in Common Wheat Cultivar Kundan. Plant Disease, 2017, 101, 456-463.	0.7	29
75	Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments. Frontiers in Plant Science, 2017, 8, 1450.	1.7	26
76	Genomic Bayesian functional regression models with interactions for predicting wheat grain yield using hyper-spectral image data. Plant Methods, 2017, 13, 62.	1.9	38
77	Identification of Genomic Associations for Adult Plant Resistance in the Background of Popular South Asian Wheat Cultivar, PBW343. Frontiers in Plant Science, 2016, 7, 1674.	1.7	8
78	Grain yield, adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Research, 2016, 192, 78-85.	2.3	83
79	Genome wide association mapping of stripe rust resistance in Afghan wheat landraces. Plant Science, 2016, 252, 222-229.	1.7	29
80	Disease Impact on Wheat Yield Potential and Prospects of Genetic Control. Annual Review of Phytopathology, 2016, 54, 303-322.	3.5	322
81	Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. Euphytica, 2016, 209, 689-692.	0.6	24
82	Effect of drought and elevated temperature on grain zinc and iron concentrations in CIMMYT spring wheat. Journal of Cereal Science, 2016, 69, 182-186.	1.8	54
83	GENÉTICA DE LA RESISTENCIA A Puccinia triticina Eriks EN TRIGOS CRISTALINOS INVERNALES. Revista Fitotecnia Mexicana, 2016, 39, 133-139.	0.0	Ο
84	GENÉTICA DE LA RESISTENCIA A LA ROYA DEL TALLO EN GENOTIPOS DE TRIGO CRISTALINO. Revista Fitotecnia Mexicana, 2016, 39, 379-384.	0.0	0
85	Emergence and Spread of New Races of Wheat Stem Rust Fungus: Continued Threat to Food Security and Prospects of Genetic Control. Phytopathology, 2015, 105, 872-884.	1.1	393
86	Efficient Use of Historical Data for Genomic Selection: A Case Study of Stem Rust Resistance in Wheat. Plant Genome, 2015, 8, eplantgenome2014.09.0046.	1.6	96
87	Genetic Gain from Phenotypic and Genomic Selection for Quantitative Resistance to Stem Rust of Wheat. Plant Genome, 2015, 8, eplantgenome2014.10.0074.	1.6	118
88	Different QTLs are associated with leaf rust resistance in wheat between China and Mexico. Molecular Breeding, 2015, 35, 1.	1.0	8
89	Characterization of Heat―and Droughtâ€&tress Tolerance in High‥ielding Spring Wheat. Crop Science, 2015, 55, 1552-1562.	0.8	19
90	Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theoretical and Applied Genetics, 2015, 128, 549-561.	1.8	49

#	Article	IF	CITATIONS
91	Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. Theoretical and Applied Genetics, 2015, 128, 501-516.	1.8	58
92	Genetic Analysis of Resistance to Leaf Rust and Yellow Rust in Spring Wheat Cultivar Kenya Kongoni. Plant Disease, 2015, 99, 1153-1160.	0.7	16
93	A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics, 2015, 16, 216.	1.2	188
94	Molecular Mapping and Validation of <i>SrND643</i> : A New Wheat Gene for Resistance to the Stem Rust Pathogen Ug99 Race Group. Phytopathology, 2015, 105, 470-476.	1.1	54
95	Molecular mapping and markers for leaf rust resistance gene Lr24 in CIMMYT wheat line 19HRWSN-122. Euphytica, 2015, 206, 57-66.	0.6	1
96	A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 2015, 47, 1494-1498.	9.4	575
97	<i>Yr60</i> , a Gene Conferring Moderate Resistance to Stripe Rust in Wheat. Plant Disease, 2015, 99, 508-511.	0.7	45
98	Genomic Selection for Quantitative Adult Plant Stem Rust Resistance in Wheat. Plant Genome, 2014, 7, plantgenome2014.02.0006.	1.6	143
99	Development of a SNP marker assay for the Lr67 gene of wheat using a genotyping by sequencing approach. Molecular Breeding, 2014, 34, 2109-2118.	1.0	52
100	<i>Lr72</i> Confers Resistance to Leaf Rust in Durum Wheat Cultivar Atil C2000. Plant Disease, 2014, 98, 631-635.	0.7	48
101	Genetic Analysis of Resistance to Leaf Rust and Stripe Rust in Wheat Cultivar Francolin#1. Plant Disease, 2014, 98, 1227-1234.	0.7	24
102	Progress Towards Genetics and Breeding for Minor Genes Based Resistance to Ug99 and Other Rusts in CIMMYT High-Yielding Spring Wheat. Journal of Integrative Agriculture, 2014, 13, 255-261.	1.7	75
103	Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Molecular Breeding, 2014, 33, 385-399.	1.0	112
104	QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Molecular Breeding, 2014, 34, 789-803.	1.0	113
105	Resistance to stem rust Ug99 in six bread wheat cultivars maps to chromosome 6DS. Theoretical and Applied Genetics, 2014, 127, 231-239.	1.8	30
106	Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 2014, 127, 781-789.	1.8	163
107	Use of wheat genetic resources to develop biofortified wheat with enhanced grain zinc and iron concentrations and desirable processing quality. Journal of Cereal Science, 2014, 60, 617-622.	1.8	73
108	A consensus map for Ug99 stem rust resistance loci in wheat. Theoretical and Applied Genetics, 2014, 127, 1561-1581.	1.8	149

#	Article	IF	CITATIONS
109	Earliness in wheat: A key to adaptation under terminal and continual high temperature stress in South Asia. Field Crops Research, 2013, 151, 19-26.	2.3	138
110	Genetic Analysis of Adult Plant Resistance to Yellow Rust and Leaf Rust in Common Spring Wheat Quaiu 3. Plant Disease, 2013, 97, 728-736.	0.7	27
111	QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population. Theoretical and Applied Genetics, 2013, 126, 1367-1375.	1.8	41
112	Genetics of resistance to yellow rust in PBW343Â×ÂKenya Kudu recombinant inbred line population and mapping of a new resistance gene YrKK. Molecular Breeding, 2013, 32, 821-829.	1.0	17
113	Identification of QTL associated with durable adult plant resistance to stem rust race Ug99 in wheat cultivar â€ ⁻ Pavon 76'. Euphytica, 2013, 190, 33-44.	0.6	52
114	QTL analysis of the spring wheat "Chapio―identifies stable stripe rust resistance despite inter-continental genotypeÂ×Âenvironment interactions. Theoretical and Applied Genetics, 2013, 126, 1721-1732.	1.8	55
115	Genetic Gains for Grain Yield in CIMMYT Spring Bread Wheat across International Environments. Crop Science, 2012, 52, 1522-1533.	0.8	75
116	Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Research, 2012, 137, 261-267.	2.3	124
117	Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 2012, 124, 1475-1486.	1.8	248
118	Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an AvocetÂ×ÂPastor wheat population. Theoretical and Applied Genetics, 2012, 124, 1283-1294.	1.8	200
119	The Emergence of Ug99 Races of the Stem Rust Fungus is a Threat to World Wheat Production. Annual Review of Phytopathology, 2011, 49, 465-481.	3.5	612
120	Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica, 2011, 179, 175-186.	0.6	170
121	Global status of wheat leaf rust caused by Puccinia triticina. Euphytica, 2011, 179, 143-160.	0.6	410
122	New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics, 2011, 122, 239-249.	1.8	224
123	Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theoretical and Applied Genetics, 2011, 123, 1257-1268.	1.8	158
124	Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Molecular Breeding, 2010, 26, 667-680.	1.0	50
125	Identification and Evaluation of Sources of Resistance to Stem Rust Race Ug99 in Wheat. Plant Disease, 2010, 94, 413-419.	0.7	70
126	Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119, 889-898.	1.8	342

#	Article	IF	CITATIONS
127	A Putative ABC Transporter Confers Durable Resistance to Multiple Fungal Pathogens in Wheat. Science, 2009, 323, 1360-1363.	6.0	1,140
128	First Detection of Virulence in <i>Puccinia triticina</i> to Resistance Genes <i>Lr27</i> + <i>Lr31</i> Present in Durum Wheat in Mexico. Plant Disease, 2009, 93, 110-110.	0.7	35
129	Wheat genetic resources enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 2008, 55, 1095-1140.	0.8	155
130	Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34 /Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theoretical and Applied Genetics, 2008, 116, 481-490.	1.8	81
131	Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theoretical and Applied Genetics, 2008, 116, 1027-1034.	1.8	99
132	The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 2008, 116, 1155-1166.	1.8	280
133	Will Stem Rust Destroy the World's Wheat Crop?. Advances in Agronomy, 2008, , 271-309.	2.4	332
134	Identification and Molecular Characterization of Leaf Rust Resistance Gene <i>Lr14a</i> in Durum Wheat. Plant Disease, 2008, 92, 469-473.	0.7	64
135	Molecular Mapping of a Leaf Rust Resistance Gene on the Short Arm of Chromosome 6B of Durum Wheat. Plant Disease, 2008, 92, 1650-1654.	0.7	43
136	Genetics of Leaf Rust Resistance in Brambling Wheat. Plant Disease, 2008, 92, 1111-1118.	0.7	8
137	Analysis of the <i>Lr34/Yr18</i> Rust Resistance Region in Wheat Germplasm. Crop Science, 2008, 48, 1841-1852.	0.8	155
138	Inheritance of Leaf Rust Resistance in the CIMMYT Wheat Weebill 1. Crop Science, 2008, 48, 1037.	0.8	11
139	Genetic Analysis of Slowâ€Rusting Resistance to Leaf Rust in Durum Wheat. Crop Science, 2008, 48, 2132-2140.	0.8	26
140	Agronomic Performance and Multiple Disease Resistance in T2BS.2RL Wheat-Rye Translocation Lines. Crop Science, 2007, 47, 254-260.	0.8	43
141	Identification and Mapping of <i>Lr3</i> and a Linked Leaf Rust Resistance Gene in Durum Wheat. Crop Science, 2007, 47, 1459-1466.	0.8	54
142	Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica, 2007, 155, 361-369.	0.6	37
143	High yielding spring bread wheat germplasm for global irrigated and rainfed production systems. Euphytica, 2007, 157, 351-363.	0.6	89
144	Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome, 2006, 49, 977-990.	0.9	168

#	Article	IF	CITATIONS
145	Effect of Leaf Rust on Grain Yield and Yield Traits of Durum Wheats with Race-Specific and Slow-Rusting Resistance to Leaf Rust. Plant Disease, 2006, 90, 1065-1072.	0.7	63
146	Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with rice. Functional and Integrative Genomics, 2006, 6, 122-131.	1.4	27
147	Leaf tip necrosis, molecular markers and \hat{l}^21 -proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theoretical and Applied Genetics, 2006, 112, 500-508.	1.8	138
148	Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 2006, 114, 21-30.	1.8	307
149	Leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum) cultivars grown in Northern Europe 1992-2002. Hereditas, 2006, 143, 1-14.	0.5	25
150	Information theoretic approach to address delay and reliability in long on-chip interconnects. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2006, , .	0.0	4
151	Current status, likely migration and strategies to mitigate the threat to wheat production from rzace Ug99 (TTKS) of stem rust pathogen CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2006, 1, .	0.6	186
152	New Genes for Leaf Rust Resistance in CIMMYT Durum Wheats. Plant Disease, 2005, 89, 809-814.	0.7	34
153	Virulence of Oat Crown Rust in Mexico. Plant Disease, 2005, 89, 941-948.	0.7	17
154	Phenotypic association of adult-plant resistance to leaf and stripe rusts in wheat. Canadian Journal of Plant Pathology, 2005, 27, 396-403.	0.8	11
155	Occurrence and Impact of a New Leaf Rust Race on Durum Wheat in Northwestern Mexico from 2001 to 2003. Plant Disease, 2004, 88, 703-708.	0.7	114
156	Title is missing!. Euphytica, 2003, 129, 371-376.	0.6	49
157	Molecular Marker Mapping of Leaf Rust Resistance Gene Lr46 and Its Association with Stripe Rust Resistance Gene Yr29 in Wheat. Phytopathology, 2003, 93, 153-159.	1.1	239
158	Microsatellite Markers for Genes Lr34/Yr18 and Other Quantitative Trait Loci for Leaf Rust and Stripe Rust Resistance in Bread Wheat. Phytopathology, 2003, 93, 881-890.	1.1	276
159	Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crops Research, 2001, 70, 167-176.	2.3	52
160	Leaf Rust Resistance Genes in Japanese Wheat cultivars. Breeding Science, 2001, 51, 83-87.	0.9	4
161	Grain yield and other traits of tall and dwarf isolines of modern bread and durum wheats. Euphytica, 2001, 119, 241-244.	0.6	32
162	Characterization of Mexican wheat landraces using agronomically useful attributes. Genetic Resources and Crop Evolution, 2000, 47, 591-602.	0.8	30

#	Article	IF	CITATIONS
163	Title is missing!. Euphytica, 1998, 100, 35-43.	0.6	33
164	Lr46: A Gene Conferring Slow-Rusting Resistance to Leaf Rust in Wheat. Phytopathology, 1998, 88, 890-894.	1.1	256
165	Agronomic Effects from Chromosome Translocations 7DL.7Ag and 1BL.1RS in Spring Wheat. Crop Science, 1998, 38, 27-33.	0.8	136
166	Genetic Progress in Reducing Losses to Leaf Rust in CIMMYTâ€Derived Mexican Spring Wheat Cultivars. Crop Science, 1998, 38, 654-659.	0.8	64
167	Genes conferring low seedling reaction to Mexican pathotypes of Puccinia recondita f. sp. tritici, and adult-plant responses of recent wheat cultivars from the former USSR. Euphytica, 1995, 81, 225-234.	0.6	6
168	Inheritance of Leaf Rust Resistance in Wheat Cultivars Morocco and Little Club. Plant Disease, 1994, 78, 383.	0.7	4
169	Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace "KU3067― Frontiers in Plant Science, 0, 13, .	1.7	2
170	Genome-Wide Association Mapping Identifies Key Genomic Regions for Grain Zinc and Iron Biofortification in Bread Wheat. Frontiers in Plant Science, 0, 13, .	1.7	3