Jeanne M Nerbonne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597662/publications.pdf Version: 2024-02-01

IEANNE M NEDRONNE

#	Article	IF	CITATIONS
1	Molecular Physiology of Cardiac Repolarization. Physiological Reviews, 2005, 85, 1205-1253.	28.8	870
2	Atrial L-Type Ca ²⁺ Currents and Human Atrial Fibrillation. Circulation Research, 1999, 85, 428-436.	4.5	525
3	Molecular basis of functional voltageâ€gated K + channel diversity in the mammalian myocardium. Journal of Physiology, 2000, 525, 285-298.	2.9	411
4	Deep RNA Sequencing Reveals Dynamic Regulation of Myocardial Noncoding RNAs in Failing Human Heart and Remodeling With Mechanical Circulatory Support. Circulation, 2014, 129, 1009-1021.	1.6	391
5	Four Kinetically Distinct Depolarization-activated K+ Currents in Adult Mouse Ventricular Myocytes. Journal of General Physiology, 1999, 113, 661-678.	1.9	300
6	Functional Knockout of the Transient Outward Current, Long-QT Syndrome, and Cardiac Remodeling in Mice Expressing a Dominant-Negative Kv4 α Subunit. Circulation Research, 1998, 83, 560-567.	4.5	289
7	Generation of Human Striatal Neurons by MicroRNA-Dependent Direct Conversion of Fibroblasts. Neuron, 2014, 84, 311-323.	8.1	262
8	Mediation of Neuronal Apoptosis by Kv2.1-Encoded Potassium Channels. Journal of Neuroscience, 2003, 23, 4798-4802.	3.6	227
9	Molecular determinants of cardiac transient outward potassium current (Ito) expression and regulation. Journal of Molecular and Cellular Cardiology, 2010, 48, 12-25.	1.9	199
10	Molecular basis of transient outward K+current diversity in mouse ventricular myocytes. Journal of Physiology, 1999, 521, 587-599.	2.9	194
11	Heterogeneous expression of repolarizing, voltage-gated K+currents in adult mouse ventricles. Journal of Physiology, 2004, 559, 103-120.	2.9	184
12	Cardiac Mechano-Gated Ion Channels and Arrhythmias. Circulation Research, 2016, 118, 311-329.	4.5	173
13	Attenuation of the Slow Component of Delayed Rectification, Action Potential Prolongation, and Triggered Activity in Mice Expressing a Dominant-Negative Kv2 α Subunit. Circulation Research, 1999, 85, 623-633.	4.5	161
14	Functional Consequences of Elimination of <i>I</i> _{to, f} and <i>I</i> _{to, s} . Circulation Research, 2000, 87, 73-79.	4.5	161
15	Studying Cardiac Arrhythmias in the Mouse—A Reasonable Model for Probing Mechanisms?. Trends in Cardiovascular Medicine, 2004, 14, 83-93.	4.9	154
16	Distinct Cellular and Molecular Mechanisms Underlie Functional Remodeling of Repolarizing K ⁺ Currents With Left Ventricular Hypertrophy. Circulation Research, 2008, 102, 1406-1415.	4.5	100
17	Elimination of the transient outward current and action potential prolongation in mouse atrial myocytes expressing a dominant negative Kv4 α subunit. Journal of Physiology, 1999, 519, 11-21.	2.9	93
18	Aâ€ŧype K ⁺ channels encoded by Kv4.2, Kv4.3 and Kv1.4 differentially regulate intrinsic excitability of cortical pyramidal neurons. Journal of Physiology, 2012, 590, 3877-3890.	2.9	82

#	Article	IF	CITATIONS
19	Electrical remodelling maintains firing properties in cortical pyramidal neurons lacking <i>KCND2</i> â€encoded Aâ€type K ⁺ currents. Journal of Physiology, 2008, 586, 1565-1579.	2.9	79
20	The Sodium Channel Accessory Subunit Navî²1 Regulates Neuronal Excitability through Modulation of Repolarizing Voltage-Gated K ⁺ Channels. Journal of Neuroscience, 2012, 32, 5716-5727.	3.6	79
21	Potassium currents in the heart: functional roles in repolarization, arrhythmia and therapeutics. Journal of Physiology, 2017, 595, 2229-2252.	2.9	76
22	Heterogeneous Expression of Voltage-Gated Potassium Channels in the Heart: Roles in Normal Excitation and Arrhythmias. Journal of Cardiovascular Electrophysiology, 2002, 13, 406-409.	1.7	73
23	Mechanisms of noncovalent \hat{l}^2 subunit regulation of NaV channel gating. Journal of General Physiology, 2017, 149, 813-831.	1.9	62
24	Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance. Journal of Neuroscience, 2015, 35, 6752-6769.	3.6	61
25	Regulation of voltage-gated K+ channel expression in the developing mammalian myocardium. , 1998, 37, 37-59.		56
26	Molecular Dissection of <i>I</i> _A in Cortical Pyramidal Neurons Reveals Three Distinct Components Encoded by Kv4.2, Kv4.3, and Kv1.4 α-Subunits. Journal of Neuroscience, 2010, 30, 5092-5101.	3.6	55
27	Molecular correlates of the calcium-independent, depolarization-activated K+currents in rat atrial myocytes. Journal of Physiology, 1999, 517, 407-420.	2.9	54
28	Characterization of SEMA3A -Encoded Semaphorin as a Naturally Occurring K v 4.3 Protein Inhibitor and its Contribution to Brugada Syndrome. Circulation Research, 2014, 115, 460-469.	4.5	54
29	Interdependent Roles for Accessory KChIP2, KChIP3, and KChIP4 Subunits in the Generation of Kv4-Encoded <i>I</i> _A Channels in Cortical Pyramidal Neurons. Journal of Neuroscience, 2010, 30, 13644-13655.	3.6	51
30	Molecular diversity of the repolarizing voltageâ€gated K + currents in mouse atrial cells. Journal of Physiology, 2000, 529, 345-358.	2.9	49
31	FGF14 localization and organization of the axon initial segment. Molecular and Cellular Neurosciences, 2013, 56, 393-403.	2.2	48
32	Mass Spectrometry-Based Identification of Native Cardiac Nav1.5 Channel α Subunit Phosphorylation Sites. Journal of Proteome Research, 2012, 11, 5994-6007.	3.7	47
33	IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Neuronal Firing in the Suprachiasmatic Nucleus and Circadian Rhythms in Locomotor Activity. Journal of Neuroscience, 2012, 32, 10045-10052.	3.6	42
34	Mechanisms contributing to myocardial potassium channel diversity, regulation and remodeling. Trends in Cardiovascular Medicine, 2016, 26, 209-218.	4.9	42
35	Co-assembly of Kv4 α Subunits with K+ Channel-interacting Protein 2 Stabilizes Protein Expression and Promotes Surface Retention of Channel Complexes*. Journal of Biological Chemistry, 2010, 285, 33413-33422.	3.4	39
36	Combined deep microRNA and mRNA sequencing identifies protective transcriptomal signature of enhanced PI3KI± signaling in cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2012, 53, 101-112.	1.9	39

JEANNE M NERBONNE

#	Article	IF	CITATIONS
37	Three Kinetically Distinct Ca2+-Independent Depolarization-Activated K+ Currents in Callosal-Projecting Rat Visual Cortical Neurons. Journal of Neurophysiology, 1997, 78, 2309-2320.	1.8	37
38	Integrated multi-omic characterization of congenital heart disease. Nature, 2022, 608, 181-191.	27.8	37
39	Mouse models of arrhythmogenic cardiovascular disease: challenges and opportunities. Current Opinion in Pharmacology, 2014, 15, 107-114.	3.5	33
40	C-terminal phosphorylation of NaV1.5 impairs FGF13-dependent regulation of channel inactivation. Journal of Biological Chemistry, 2017, 292, 17431-17448.	3.4	33
41	Molecular Basis of Functional Myocardial Potassium Channel Diversity. Cardiac Electrophysiology Clinics, 2016, 8, 257-273.	1.7	31
42	Notch-Mediated Epigenetic Regulation of Voltage-Gated Potassium Currents. Circulation Research, 2016, 119, 1324-1338.	4.5	31
43	Distinct Firing Properties of Vasoactive Intestinal Peptide-Expressing Neurons in the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2016, 31, 57-67.	2.6	31
44	Regional Differences in mRNA and IncRNA Expression Profiles in Non-Failing Human Atria and Ventricles. Scientific Reports, 2018, 8, 13919.	3.3	30
45	Differential Expression and Remodeling of Transient Outward Potassium Currents in Human Left Ventricles. Circulation: Arrhythmia and Electrophysiology, 2018, 11, e005914.	4.8	28
46	Loss of Navβ4-Mediated Regulation of Sodium Currents in Adult Purkinje Neurons Disrupts Firing and Impairs Motor Coordination and Balance. Cell Reports, 2017, 19, 532-544.	6.4	27
47	Acute Knockdown of Kv4.1 Regulates Repetitive Firing Rates and Clock Gene Expression in the Suprachiasmatic Nucleus and Daily Rhythms in Locomotor Behavior. ENeuro, 2017, 4, ENEURO.0377-16.2017.	1.9	24
48	I _A Channels Encoded by Kv1.4 and Kv4.2 Regulate Circadian Period of PER2 Expression in the Suprachiasmatic Nucleus. Journal of Biological Rhythms, 2015, 30, 396-407.	2.6	22
49	Circulating long noncoding RNA DKFZP434I0714 predicts adverse cardiovascular outcomes in patients with end-stage renal disease. International Journal of Cardiology, 2019, 277, 212-219.	1.7	19
50	The Role of the Voltage-Gated Potassium Channel Proteins Kv8.2 and Kv2.1 in Vision and Retinal Disease: Insights from the Study of Mouse Gene Knock-Out Mutations. ENeuro, 2019, 6, ENEURO.0032-19.2019.	1.9	19
51	VIP and secretin augment cardiac L-type calcium channel currents in isolated adult rat ventricular myocytes. Pflugers Archiv European Journal of Physiology, 1996, 432, 821-830.	2.8	16
52	Repolarizing cardiac potassium channels: Multiple sites and mechanisms for CaMKII-mediated regulation. Heart Rhythm, 2011, 8, 938-941.	0.7	14
53	Dual Transgene Expression in Murine Cerebellar Purkinje Neurons by Viral Transduction In Vivo. PLoS ONE, 2014, 9, e104062.	2.5	14
54	Polycystin 2 is increased in disease to protect against stress-induced cell death. Scientific Reports, 2020, 10, 386.	3.3	13

JEANNE M NERBONNE

#	Article	IF	CITATIONS
55	Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. Journal of General Physiology, 2021, 153, .	1.9	13
56	Molecular, Cellular and Functional Changes in the Retinas of Young Adult Mice Lacking the Voltage-Gated K+ Channel Subunits Kv8.2 and K2.1. International Journal of Molecular Sciences, 2021, 22, 4877.	4.1	11
57	ldentification of structures for ion channel kinetic models. PLoS Computational Biology, 2021, 17, e1008932.	3.2	11
58	Proteomic and functional mapping of cardiac NaV1.5 channel phosphorylation sites. Journal of General Physiology, 2021, 153, .	1.9	10
59	Proteomic analysis of native cerebellar iFGF14 complexes. Channels, 2016, 10, 297-312.	2.8	8
60	Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 1: Basic and Translational Aspects. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e010181.	4.8	8
61	Early remodeling of repolarizing K+ currents in the αMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2017, 103, 93-101.	1.9	7
62	Voltage-gated sodium currents in cerebellar Purkinje neurons: functional and molecular diversity. Cellular and Molecular Life Sciences, 2018, 75, 3495-3505.	5.4	7
63	Modulation of the effects of Class-Ib antiarrhythmics on cardiac NaV1.5-encoded channels by accessory NaVβ subunits. JCl Insight, 2021, 6, .	5.0	7
64	Intrinsic mechanisms in the gating of resurgent Na+ currents. ELife, 2022, 11, .	6.0	6
65	Understanding Circadian Mechanisms of Sudden Cardiac Death: A Report From the National Heart, Lung, and Blood Institute Workshop, Part 2: Population and Clinical Considerations. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e010190.	4.8	3
66	Regional differences in the expression of tetrodotoxin-sensitive inward Ca2+ and outward Cs+/K+ currents in mouse and human ventricles. Channels, 2019, 13, 72-87.	2.8	1
67	Training the Next Generation of Translational Cardiovascular Investigators. JACC Basic To Translational Science, 2016, 1, 554-556.	4.1	Ο
68	Controlling the Traffic to Keep the Beat: Targeting of Myocardial Sodium Channels. Circulation Research, 2021, 129, 366-368.	4.5	0