Rahul Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597407/publications.pdf

Version: 2024-02-01

27 papers

411 citations

759190 12 h-index 752679 20 g-index

28 all docs 28 docs citations

28 times ranked

509 citing authors

#	Article	IF	Citations
1	Effect of chemical substitution on the construction of boroxine-based supramolecular crystalline polymers featuring Bâ†N dative bonds. CrystEngComm, 2022, 24, 1695-1699.	2.6	10
2	Yet another perspective on hole interactions. Physical Chemistry Chemical Physics, 2021, 23, 19948-19963.	2.8	23
3	Quantitative investigation on the intermolecular interactions present in 8-(4-ethoxyphenyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione with insight from interaction energies, energy framework, electrostatic potential map and fingerprint analysis. Journal of Chemical Sciences, 2020, 132, 1.	1.5	5
4	Understanding Reactivity and Assembly of Dichalcogenides: Structural, Electrostatic Potential, and Topological Analyses of 3 <i>H</i> -1,2-Benzodithiol-3-one and Selenium Analogs. Crystal Growth and Design, 2020, 20, 7704-7725.	3.0	11
5	Insight from electron density and energy framework analysis on the structural features of F $<$ sub> $<$ i> \times i> \times i> \times i> (isub)-TCNQ (\times i> \times i) = 0, 2, 4) family of molecules. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 71-78.	1.1	7
6	Observation of 3D isostructurality in halogen substituted N -benzoyl- N -phenylbenzamides. Journal of Molecular Structure, 2018, 1164, 280-288.	3.6	1
7	Quantitative investigation of intermolecular interactions in dimorphs of 3-Chloro-N-(2-fluorophenyl)benzamide and 2-lodo-N-(4- bromophenyl)benzamide. Journal of Chemical Sciences, 2018, 130, 1.	1.5	2
8	Role of halogen-involved intermolecular interactions and existence of isostructurality in the crystal packing of —CF ₃ and halogen (Cl or Br or I) substituted benzamides. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 574-591.	1,1	9
9	Characterization of the short Oâ< O Ï€-hole tetrel bond in the solid state. CrystEngComm, 2018, 20, 3308-3312.	2.6	22
10	Similarities and differences in the crystal packing of halogen-substituted indole derivatives. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 376-384.	1.1	3
11	Exploring the simultaneous σ-hole/Ĩ€-hole bonding characteristics of a BrÏ€ interaction in an ebselen derivative <i>via</i> experimental and theoretical electron-density analysis. IUCrJ, 2018, 5, 647-653.	2.2	19
12	Impact of the complementary electronic nature of C–X and M–X halogens and intramolecular XâcŌ interaction on supramolecular assemblies of Zn(<scp>ii</scp>) complexes of o-halophenyl substituted hydrazides. CrystEngComm, 2017, 19, 1607-1619.	2.6	13
13	Complex electronic interplay of σ-hole and π-hole interactions in crystals of halogen substituted 1,3,4-oxadiazol-2(3H)-thiones. CrystEngComm, 2017, 19, 3485-3498.	2.6	18
14	Synthesis, crystal structure and theoretical analysis of intermolecular interactions in two biologically active derivatives of 1,2,4-triazoles. Journal of Molecular Structure, 2017, 1134, 426-434.	3.6	10
15	Quantitative investigation of C–Hâ√Ï€ and other intermolecular interactions in a series of crystalline N-(substituted phenyl)-2-naphthamide derivatives. CrystEngComm, 2017, 19, 5473-5491.	2.6	13
16	Characterization of non-classical C Brâ< ⁻ i€ interactions in (E)-1,3-dibromo-5-(2-(ferrocenyl)vinyl)benzene and related derivatives of ferrocene. Journal of Molecular Structure, 2017, 1131, 16-24.	3.6	7
17	Type I C=SS=C interactions. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C672-C672.	0.1	O
18	Quantitative Investigation of C-FÎ Interaction in 4-(2-(((6-(trifluoromethyl))) Tj ETQq0 0 0 rgBT /Overlock 10 Tf scommunication, 2017, 03, .	50 67 Td (o.o	pyridin-2-yl)ox 0

Communication, 2017, 03, .

#	Article	IF	CITATION
19	"Pnicogen bonds―or "chalcogen bonds― exploiting the effect of substitution on the formation of Pâ⊂Se noncovalent bonds. Physical Chemistry Chemical Physics, 2016, 18, 13820-13829.	2.8	56
20	Characterization of Nâ√O non-covalent interactions involving σ-holes: "electrostatics―or "dispersion― Physical Chemistry Chemical Physics, 2016, 18, 29946-29954.	2.8	14
21	Understanding the effect of substitution on the formation of SF chalcogen bond. Journal of Chemical Sciences, 2016, 128, 1589-1596.	1.5	12
22	Crystallographic and Theoretical Investigation on the Nature and Characteristics of Type I Câ•S···Sâ•€ Interactions. Crystal Growth and Design, 2016, 16, 6734-6742.	3.0	22
23	Exploring the Role of Substitution on the Formation of SeÂ-Â-Â-O/N Noncovalent Bonds. Journal of Physical Chemistry B, 2015, 119, 14857-14870.	2.6	25
24	Crystallographic and computational investigation of intermolecular interactions involving organic fluorine with relevance to the hybridization of the carbon atom. CrystEngComm, 2015, 17, 3596-3609.	2.6	33
25	Crystal Structure Studies on Some of Benzamide Ring Substituted Isoselenazolones and Symmetric Diaryl Monoselenides Derived from Benzamides. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 165-177.	1.2	3
26	Analysis of intermolecular interactions in 3-(4-fluoro-3-phenoxyphenyl)-1-((4-methylpiperazin-1-yl)methyl)-1H-1,2,4-triazole-5-thiol. Journal of Chemical Sciences, 2014, 126, 1337-1345.	1.5	5
27	Experimental and theoretical analysis of lpâ√Ï€ intermolecular interactions in derivatives of 1,2,4-triazoles. CrystEngComm, 2014, 16, 1702-1713.	2.6	67