James M Harnly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597368/publications.pdf Version: 2024-02-01

IAMES M HADNIV

#	Article	IF	CITATIONS
1	Proposed minimum reporting standards for chemical analysis. Metabolomics, 2007, 3, 211-221.	1.4	3,589
2	Flavonoid Content of U.S. Fruits, Vegetables, and Nuts. Journal of Agricultural and Food Chemistry, 2006, 54, 9966-9977.	2.4	420
3	Flavonoids and Heart Health: Proceedings of the ILSI North America Flavonoids Workshop, May 31–June 1, 2005, Washington, DC1, , ,. Journal of Nutrition, 2007, 137, 718S-737S.	1.3	316
4	A Screening Method for the Identification of Glycosylated Flavonoids and Other Phenolic Compounds Using a Standard Analytical Approach for All Plant Materials. Journal of Agricultural and Food Chemistry, 2007, 55, 1084-1096.	2.4	248
5	The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chemistry, 2008, 107, 399-410.	4.2	177
6	Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of Food Composition and Analysis, 2007, 20, 361-369.	1.9	141
7	UHPLC-PDA-ESI/HRMS ^{<i>n</i>} Profiling Method To Identify and Quantify Oligomeric Proanthocyanidins in Plant Products. Journal of Agricultural and Food Chemistry, 2014, 62, 9387-9400.	2.4	125
8	UHPLC-PDA-ESI/HRMS/MS ^{<i>n</i>} Analysis of Anthocyanins, Flavonol Glycosides, and Hydroxycinnamic Acid Derivatives in Red Mustard Greens (Brassica juncea Coss Variety). Journal of Agricultural and Food Chemistry, 2011, 59, 12059-12072.	2.4	121
9	Determination of the flavonoid components of cashew apple (Anacardium occidentale) by LC-DAD-ESI/MS. Food Chemistry, 2007, 105, 1112-1118.	4.2	107
10	Myrosinase-dependent and –independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Frontiers in Plant Science, 2015, 6, 831.	1.7	90
11	Profiling methods for the determination of phenolic compounds in foods and dietary supplements. Analytical and Bioanalytical Chemistry, 2007, 389, 47-61.	1.9	84
12	Comprehensive characterization of <i>C</i> -glycosyl flavones in wheat (<i>Triticum aestivum</i> L.) germ using UPLC-PDA-ESI/HRMS ⁿ and mass defect filtering. Journal of Mass Spectrometry, 2016, 51, 914-930.	0.7	80
13	Chromatographic fingerprint analysis for evaluation of Ginkgo biloba products. Analytical and Bioanalytical Chemistry, 2007, 389, 251-261.	1.9	73
14	Recommendations on reporting requirements for flavonoids in research. American Journal of Clinical Nutrition, 2015, 101, 1113-1125.	2.2	68
15	Quantitation of the Hydroxycinnamic Acid Derivatives and the Glycosides of Flavonols and Flavones by UV Absorbance after Identification by LC-MS. Journal of Agricultural and Food Chemistry, 2012, 60, 544-553.	2.4	64
16	Discriminating between Cultivars and Treatments of Broccoli Using Mass Spectral Fingerprinting and Analysis of Varianceâ^'Principal Component Analysis. Journal of Agricultural and Food Chemistry, 2008, 56, 9819-9827.	2.4	54
17	Quantitation of Flavanols, Proanthocyanidins, Isoflavones, Flavanones, Dihydrochalcones, Stilbenes, Benzoic Acid Derivatives Using Ultraviolet Absorbance after Identification by Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2012, 60, 5832-5840.	2.4	52
18	Differentiation of Whole Grain from Refined Wheat (T. aestivum) Flour Using Lipid Profile of Wheat Bran, Germ, and Endosperm with UHPLC-HRAM Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2015, 63, 6189-6211.	2.4	49

JAMES M HARNLY

#	Article	IF	CITATIONS
19	Nontargeted Detection of Adulteration of Skim Milk Powder with Foreign Proteins Using UHPLC–UV. Journal of Agricultural and Food Chemistry, 2014, 62, 5198-5206.	2.4	47
20	Flow Injection Mass Spectral Fingerprints Demonstrate Chemical Differences in Rio Red Grapefruit with Respect to Year, Harvest Time, and Conventional versus Organic Farming. Journal of Agricultural and Food Chemistry, 2010, 58, 4545-4553.	2.4	45
21	Detection of Adulterated Ginkgo biloba Supplements Using Chromatographic and Spectral Fingerprints. Journal of AOAC INTERNATIONAL, 2012, 95, 1579-1587.	0.7	41
22	Profiling of Glucosinolates and Flavonoids in <i>Rorippa indica</i> (Linn.) Hiern. (Cruciferae) by UHPLC-PDA-ESI/HRMS ^{<i>n</i>} . Journal of Agricultural and Food Chemistry, 2014, 62, 6118-6129.	2.4	39
23	UV Spectral Fingerprinting and Analysis of Variance-Principal Component Analysis: a Useful Tool for Characterizing Sources of Variance in Plant Materials. Journal of Agricultural and Food Chemistry, 2008, 56, 5457-5462.	2.4	36
24	Instrumentation for simultaneous multielement atomic absorption spectrometry with graphite furnace atomization. Analytical and Bioanalytical Chemistry, 1996, 355, 501-509.	1.9	32
25	Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa). Planta Medica, 2016, 82, 250-262.	0.7	32
26	How similar is similar enough? A sufficient similarity case study with Ginkgo biloba extract. Food and Chemical Toxicology, 2018, 118, 328-339.	1.8	32
27	Progress in developing analytical and label-based dietary supplement databases at the NIH Office of Dietary Supplements. Journal of Food Composition and Analysis, 2008, 21, S83-S93.	1.9	30
28	Exploring Authentic Skim and Nonfat Dry Milk Powder Variance for the Development of Nontargeted Adulterant Detection Methods Using Near-Infrared Spectroscopy and Chemometrics. Journal of Agricultural and Food Chemistry, 2013, 61, 9810-9818.	2.4	30
29	Progress in development of an integrated dietary supplement ingredient database at the NIH Office of Dietary Supplements. Journal of Food Composition and Analysis, 2006, 19, S108-S114.	1.9	28
30	Probability of Identification: Adulteration of American Ginseng with Asian Ginseng. Journal of AOAC INTERNATIONAL, 2013, 96, 1258-1265.	0.7	28
31	Probability of Identification: A Statistical Model for the Validation of Qualitative Botanical Identification Methods. Journal of AOAC INTERNATIONAL, 2012, 95, 273-285.	0.7	26
32	Non-targeted detection of milk powder adulteration by 1H NMR spectroscopy and conformity index analysis. Journal of Food Composition and Analysis, 2019, 78, 49-58.	1.9	25
33	Variance in the Chemical Composition of Dry Beans Determined from UV Spectral Fingerprints. Journal of Agricultural and Food Chemistry, 2009, 57, 8705-8710.	2.4	24
34	Characterization of Near-Infrared Spectral Variance in the Authentication of Skim and Nonfat Dry Milk Powder Collection Using ANOVA-PCA, Pooled-ANOVA, and Partial Least-Squares Regression. Journal of Agricultural and Food Chemistry, 2014, 62, 8060-8067.	2.4	24
35	Interlaboratory Trial for Measurement of Vitamin D and 25-Hydroxyvitamin D [25(OH)D] in Foods and a Dietary Supplement Using Liquid Chromatography–Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2016, 64, 3167-3175	2.4	23
36	Flow Injection Mass Spectroscopic Fingerprinting and Multivariate Analysis for Differentiation of Three Panax Species. Journal of AOAC INTERNATIONAL, 2011, 94, 90-99.	0.7	22

JAMES M HARNLY

#	Article	IF	CITATIONS
37	USDA's FoodData Central: what is it and why is it needed today?. American Journal of Clinical Nutrition, 2022, 115, 619-624.	2.2	22
38	Identification of adulteration in botanical samples with untargeted metabolomics. Analytical and Bioanalytical Chemistry, 2020, 412, 4273-4286.	1.9	20
39	A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting. Applied Spectroscopy, 2011, 65, 250-259.	1.2	18
40	A Non-targeted Approach to Chemical Discrimination Between Green Tea Dietary Supplements and Green Tea Leaves by HPLC/MS. Journal of AOAC INTERNATIONAL, 2011, 94, 487-497.	0.7	18
41	A Potential Repellent Against the Coffee Berry Borer (Coleoptera: Curculionidae: Scolytinae). Journal of Insect Science, 2017, 17, .	0.6	17
42	Influence of direct and sequential extraction methodology on metabolic profiling. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1073, 34-42.	1.2	17
43	Use of flow injection mass spectrometric fingerprinting and chemometrics for differentiation of three black cohosh species. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 105, 121-129.	1.5	16
44	Feruloyl dopamine-O-hexosides are efficient marker compounds as orthogonal validation for authentication of black cohosh (Actaea racemosa)—an UHPLC-HRAM-MS chemometrics study. Analytical and Bioanalytical Chemistry, 2017, 409, 2591-2600.	1.9	16
45	Analytical Challenges and Metrological Approaches to Ensuring Dietary Supplement Quality: International Perspectives. Frontiers in Pharmacology, 2021, 12, 714434.	1.6	16
46	A high fat, high cholesterol diet leads to changes in metabolite patterns in pigs – A metabolomic study. Food Chemistry, 2015, 173, 171-178.	4.2	15
47	The Dietary Supplement Label Database: Recent Developments and Applications. Journal of Nutrition, 2018, 148, 1428S-1435S.	1.3	15
48	Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Analytical and Bioanalytical Chemistry, 2020, 412, 6789-6809.	1.9	14
49	Use of fuzzy chromatography mass spectrometric (FCMS) fingerprinting and chemometric analysis for differentiation of whole-grain and refined wheat (T. aestivum) flour. Analytical and Bioanalytical Chemistry, 2015, 407, 7875-7888.	1.9	12
50	Characterization of Maca (Lepidium meyenii/Lepidium peruvianum) Using a Mass Spectral Fingerprinting, Metabolomic Analysis, and Genetic Sequencing Approach. Planta Medica, 2020, 86, 674-685.	0.7	9
51	Macro-and micronutrients in raw plant foods: The similarities of foods and implication for dietary diversification. Journal of Food Composition and Analysis, 2021, 102, 103993.	1.9	9
52	Discrimination Among Panax Species Using Spectral Fingerprinting. Journal of AOAC INTERNATIONAL, 2011, 94, 1411-1421.	0.7	9
53	Botanical supplements: Detecting the transition from ingredient to product. Journal of Food Composition and Analysis, 2017, 64, 85-92.	1.9	8
54	Determination of Variance of Secondary Metabolites in Lettuces Grown Under Different Light Sources by Flow Injection Mass Spectrometric (FIMS) Fingerprinting and ANOVA–PCA. Journal of Analysis and Testing, 2018, 2, 312-321.	2.5	8

JAMES M HARNLY

#	Article	IF	CITATIONS
55	The spatial distribution and photometric and analytical accuracy of Sn determined by graphite furnace atomic absorption spectrometry in the presence of sulfates and palladium. Journal of Analytical Atomic Spectrometry, 2002, 17, 515-523.	1.6	7
56	Importance of Accurate Measurements in Nutrition Research: Dietary Flavonoids as a Case Study. Advances in Nutrition, 2016, 7, 375-382.	2.9	7
57	Authentication of black cohosh (Actaea racemosa) dietary supplements based on chemometric evaluation of hydroxycinnamic acid esters and hydroxycinnamic acid amides. Analytical and Bioanalytical Chemistry, 2019, 411, 7147-7156.	1.9	7
58	Title is missing!. Journal of Analytical Atomic Spectrometry, 2001, 16, 1241-1252.	1.6	6
59	Variance of Commercial Powdered Milks Analyzed by Proton Nuclear Magnetic Resonance and Impact on Detection of Adulterants. Journal of Agricultural and Food Chemistry, 2018, 66, 8478-8488.	2.4	6
60	Identification of High and Low Branched-Chain Fatty Acid–Producing Phenotypes in Holstein Cows following High-Forage and Low-Forage Diets in a Crossover Designed Trial. Current Developments in Nutrition, 2022, 6, nzab154.	0.1	6
61	Classification of structural characteristics facilitate identifying steroidal saponins in Alliums using ultra-high performance liquid chromatography high-resolution mass spectrometry. Journal of Food Composition and Analysis, 2021, 102, 103994.	1.9	5
62	A systematic approach to determine the impact of elevated CO2 levels on the chemical composition of wheat (Triticum aestivum). Journal of Cereal Science, 2020, 95, 103020.	1.8	4
63	Variation of Phytochemicals in Leaves of Seven Accessions of Hibiscus sabdariffa Grown under Field, Green Roof, and High Tunnel Conditions. ACS Food Science & Technology, 0, , .	1.3	4
64	Contrast Study on Secondary Metabolite Profile between Pastas Made from Three Single Varietal Common Bean (<i>Phaseolus vulgaris</i> L.) and Durum Wheat (<i>Triticum durum</i>) . ACS Food Science & Technology, 2022, 2, 895-904.	1.3	2
65	Expert Review Panel Approves First Action Methods for Antioxidants in Foods. Journal of AOAC INTERNATIONAL, 2012, 95, 1555-1556.	0.7	1
66	Identification of Branched-Chain Fatty Acid Producing Phenotypes in Holstein Cows. Current Developments in Nutrition, 2021, 5, 605.	0.1	1
67	Deriving information from complex data sets: Impact of forage on fatty acids in cow milk. Journal of Food Composition and Analysis, 2022, 107, 104179.	1.9	1
68	Exploring the Variance of Authentic Skim and Non-Fat Dry Milk Powder Spectra. NIR News, 2015, 26, 11-14.	1.6	0
69	Elimination of the Variance Between Individuals Is Necessary to Evaluate the Impact of Garlic on the Metabolic Profile of Human Urine. Current Developments in Nutrition, 2020, 4, nzaa045_035.	0.1	0
70	Response to Letter to the Editor regarding "Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches― Analytical and Bioanalytical Chemistry, 2021, 413, 7627-7629.	1.9	0
71	A Screening Method for Flavonoids and Phenolic Acids. FASEB Journal, 2006, 20, .	0.2	0
72	Profiling cocoaâ€derived flavanols and their metabolites in serum, urine, liver, and intestinal contents of pigs fed flavanolâ€enriched cocoa powder (LB420). FASEB Journal, 2014, 28, .	0.2	0

#	Article	IF	CITATIONS
73	Changes in the Intestinal Microbiota and Host Inflammatory Gene Expression in Pigs Fed a Flavanolâ€Enriched Cocoa Powder. FASEB Journal, 2015, 29, 914.4.	0.2	0