Zhi Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597144/publications.pdf

Version: 2024-02-01

		1163117	1199594
19	138	8	12
papers	citations	h-index	g-index
19	19	19	201
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cyclobutyne: Minimum or Transition State?. Journal of Organic Chemistry, 2019, 84, 5548-5553.	3.2	3
2	Alkali-Metal Trihalides: M+X3–lon Pair or MX–X2Complex?. Journal of Physical Chemistry B, 2018, 122, 3339-3353.	2.6	8
3	Vibrational frequencies, structures, and energetics of the highly challenging alkali metal trifluorides MF3 (M = Li, Na, K, Rb, and Cs). Physical Chemistry Chemical Physics, 2018, 20, 18986-18994.	2.8	9
4	Prediction and Characterization of Alkalineâ€Earth (M=Be, Mg, Ca, Sr, and Ba) Metallacyclopentadienes and Relevant Derivatives. ChemistrySelect, 2017, 2, 1442-1453.	1.5	7
5	Thioformaldehyde <i>S</i> -Sulfide, Sulfur Analogue of the Criegee Intermediate: Structures, Energetics, and Rovibrational Analysis. Journal of Physical Chemistry A, 2017, 121, 998-1006.	2.5	6
6	The Hydrogen Abstraction Reaction H ₂ S + OH â†' H ₂ O + SH: Convergent Quantum Mechanical Predictions. Journal of Physical Chemistry A, 2017, 121, 9136-9145.	2. 5	11
7	Communication: The Al + CO2 → AlO + CO reaction: Experiment vs. theory. Journal of Chemical Physics, 2017, 147, 171101.	3.0	5
8	Experimental and Theoretical Investigation of Effects of Ethanol and Acetic Acid on Carcinogenic NDMA Formation in Simulated Gastric Fluid. Journal of Physical Chemistry A, 2016, 120, 4505-4513.	2.5	1
9	Prototypical metal–oxo bonds: the reactions of Cr(PF3)6, Fe(PF3)5, and Ni(PF3)4 with oxygen. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	O
10	The reactions of Cr(CO) ₆ , Fe(CO) ₅ , and Ni(CO) ₄ with O ₂ yield viable oxoâ€metal carbonyls. Journal of Computational Chemistry, 2014, 35, 998-1009.	3.3	6
11	Does the metala€ metal sextuple bond exist in the bimetallic sandwich compounds Cr ₂ (C ₆ H ₆) ₂ , Mo ₂ (C ₆ H ₆) ₂ , and W ₂ . (C ₆ H ₆) ₂ ? ^{â€} . Molecular Physics, 2013,	1.7	11
12	The Influence of Phosphate Buffer on the Formation of N-Nitrosodimethylamine from Dimethylamine Nitrosation. Journal of Chemistry, 2013, 2013, 1-9.	1.9	4
13	Reactions of Amine and Peroxynitrite: Evidence for Hydroxylation as Predominant Reaction and New Insight into the Modulation of CO ₂ . Journal of Physical Chemistry A, 2012, 116, 8058-8066.	2.5	1
14	Carbon Dioxide in the Nitrosation of Amine: Catalyst or Inhibitor?. Journal of Physical Chemistry A, 2011, 115, 7753-7764.	2.5	27
15	Theoretical investigation of reactivities of amines in the N-nitrosation reactions by N2O3. Journal of Molecular Modeling, 2011, 17, 669-680.	1.8	9
16	Theoretical investigation of the isomerization and dissociation reactions of all the HOONO2 isomers. Computational and Theoretical Chemistry, 2010, 959, 42-48.	1.5	1
17	Theoretical Investigation of <i>N</i> -Nitrosodimethylamine Formation from Nitrosation of Trimethylamine. Journal of Physical Chemistry A, 2010, 114, 455-465.	2.5	13
18	Theoretical Investigation of N-Nitrosation Mechanism of Amino Acids Mediated by N2O3., 2009, , .		1

#	ARTICLE	IF	CITATIONS
19	Theoretical investigation of the isomerization of N2O3 and the N-nitrosation of dimethylamine by asym-N2O3, sym-N2O3, and trans–cis N2O3 isomers. Computational and Theoretical Chemistry, 2009, 908, 107-113.	1.5	15