Yoshiko Okamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1597130/publications.pdf

Version: 2024-02-01

C
)
nors

#	Article	IF	CITATIONS
1	Improvement of fatty acid productivity of thraustochytrid, Aurantiochytrium sp. by genome editing. Journal of Bioscience and Bioengineering, 2021, 131, 373-380.	2.2	13
2	Visualization of Gene Reciprocity among Lactic Acid Bacteria in Yogurt by RNase H-Assisted Rolling Circle Amplification-Fluorescence In Situ Hybridization. Microorganisms, 2021, 9, 1208.	3.6	1
3	Screening of Neutrophil Activating Factors from a Metagenome Library of Sponge-Associated Bacteria. Marine Drugs, 2021, 19, 427.	4.6	1
4	Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification. Scientific Reports, 2020, 10, 9588.	3.3	8
5	Complete genome sequence of Nitratireductor sp. strain OM-1: A lipid-producing bacterium with potential use in wastewater treatment. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00366.	4.4	3
6	Discovery of a Novel Gene Conferring Tellurite Tolerance Through Tellurite Reduction to Escherichia coli Transformant in Marine Sediment Metagenomic Library. Marine Biotechnology, 2019, 21, 762-772.	2.4	2
7	Metabolite Profile Analysis of <i>Aurantiochytrium limacinum</i> SR21 Grown on Acetate-based Medium for Lipid Fermentation. Journal of Oleo Science, 2019, 68, 541-549.	1.4	12
8	Isolation of High Carotenoid-producing <i>Aurantiochytrium</i> sp. Mutants and Improvement of Astaxanthin Productivity Using Metabolic Information. Journal of Oleo Science, 2018, 67, 571-578.	1.4	36
9	Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid. Journal of Bioscience and Bioengineering, 2018, 125, 180-184.	2.2	17
10	RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection. Scientific Reports, 2018, 8, 7770.	3.3	29
11	Decomposition kinetics of uronic acids obtained from kelp under hydrothermal condition. Journal of the Energy Institute, 2017, 90, 185-190.	5.3	3
12	Improved methanization and microbial diversity during batch mode cultivation with repetition of substrate addition using defined organic matter and marine sediment inoculum at seawater salinity. Bioresource Technology, 2017, 245, 833-840.	9.6	7
13	Real-Time Mass Spectrometric Analysis of Hydrothermal Reaction Products. Industrial & amp; Engineering Chemistry Research, 2017, 56, 9993-9998.	3.7	2
14	Quantitative In Situ Mass Spectrometry Analysis of Mannitol Decomposition Products under Hydrothermal Conditions. Energy & Samp; Fuels, 2017, 31, 10866-10873.	5.1	5
15	In situ mass spectrometry of glucose decomposition under hydrothermal reactions. Korean Journal of Chemical Engineering, 2017, 34, 1524-1530.	2.7	3
16	<i>In-situ</i> Mass Spectroscopic Analysis of Glucose Decomposition under Hydrothermal Condition: Quantitative Analysis for Reaction Kinetics. Journal of the Japan Petroleum Institute, 2017, 60, 101-109.	0.6	5
17	Development of a bench-top extra-cleanroom for DNA amplification. BioTechniques, 2016, 61, 42-46.	1.8	8
18	Kinetics of Sorbitol Decomposition under Hydrothermal Condition. Journal of the Japan Petroleum Institute, 2016, 59, 149-154.	0.6	6

#	Article	IF	CITATIONS
19	Kinetics of Sorbitol Decomposition under Hydrothermal Condition. Journal of the Japan Petroleum Institute, 2016, 59, 241-241.	0.6	O
20	Characterization of a novel gene involved in cadmium accumulation screened from sponge-associated bacterial metagenome. Gene, 2016, 576, 618-625.	2.2	12
21	Isolation and characterization of bacterium producing lipid from short-chain fatty acids. Bioresource Technology, 2016, 201, 215-221.	9.6	6
22	Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community. Bioresource Technology, 2016, 200, 616-623.	9.6	12
23	Bacterial community structure and predicted alginate metabolic pathway in an alginate-degrading bacterial consortium. Journal of Bioscience and Bioengineering, 2016, 121, 286-292.	2.2	19
24	Characterization of a halotolerant acetoclastic methanogen highly enriched from marine sediment and its application in removal of acetate. Journal of Bioscience and Bioengineering, 2016, 121, 196-202.	2.2	6
25	Decomposition Kinetics of Mannose, Its Sugar Alcohol, and Its Uronic Acid under Hydrothermal Condition. Journal of Chemical Engineering of Japan, 2016, 49, 663-667.	0.6	1
26	High-rate Fermentation of Acetate to Methane under Saline Condition by Aceticlastic Methanogens Immobilized in Marine Sediment. Journal of the Japan Petroleum Institute, 2016, 59, 9-15.	0.6	0
27	Determination of Mannitol Decomposition Rate under Hydrothermal Pretreatment Condition. Journal of the Japan Petroleum Institute, 2015, 58, 252-255.	0.6	4
28	Effect of Salinity on Methanogenic Propionate Degradation by Acclimated Marine Sediment-Derived Culture. Applied Biochemistry and Biotechnology, 2015, 177, 1541-1552.	2.9	5
29	Improved methane production from brown algae under high salinity by fed-batch acclimation. Bioresource Technology, 2015, 187, 275-281.	9.6	27
30	Dysgonomonas alginatilytica sp. nov., an alginate-degrading bacterium isolated from a microbial consortium. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3570-3575.	1.7	22
31	Behavior of Organics in Kelp during Hydrothermal Pretreatment: Fundamental Characteristics and Effect of Salt. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 531-535.	0.2	5
32	Value-added lipid production from brown seaweed biomass by two-stage fermentation using acetic acid bacterium and thraustochytrid. Applied Microbiology and Biotechnology, 2014, 98, 9207-9216.	3.6	18
33	Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity. Bioresource Technology, 2014, 169, 362-366.	9.6	47
34	Isolation and Characterization of a GDSL Esterase from the Metagenome of a Marine Sponge-associated Bacteria. Marine Biotechnology, 2010, 12, 395-402.	2.4	50
35	Development of single template amplification and product immobilization with single bead trap array. Journal of Bioscience and Bioengineering, 2009, 108, S150.	2.2	0
36	Whole genome sequence of <i>Desulfovibrio magneticus</i> strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Research, 2009, 19, 1801-1808.	5.5	103

3

#	Article	IF	CITATIONS
37	Marine biotechnology for materials and energy production. Journal of Biotechnology, 2008, 136, S520.	3.8	1
38	Development of a Cell Surface Display System in a Magnetotactic Bacterium, " <i>Magnetospirillum magneticum</i> ―AMB-1. Applied and Environmental Microbiology, 2008, 74, 3342-3348.	3.1	22
39	Cellular Responses to Electrochemical Killing Process by Applying a Constant Potential in Synchronously Cultured Saccharomyces Cerevisiae. Electrochemistry, 2008, 76, 603-605.	1.4	1
40	Cytoplasmic ATPase involved in ferrous ion uptake from magnetotactic bacteriumMagnetospirillum magneticumAMB-1. FEBS Letters, 2007, 581, 3443-3448.	2.8	16
41	Dynamic analysis of a genomic island inMagnetospirillumsp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Letters, 2006, 580, 801-812.	2.8	87
42	Origin of magnetosome membrane: Proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics, 2006, 6, 5234-5247.	2.2	136
43	Global Gene Expression Analysis of Iron-Inducible Genes in Magnetospirillum magneticum AMB-1. Journal of Bacteriology, 2006, 188, 2275-2279.	2.2	72
44	Molecular and Biotechnological Aspects of Bacterial Magnetite. , 2005, , 91-106.		0
45	Specific degradation of H. pylori urease by a catalytic antibody light chain. FEBS Journal, 2005, 272, 4497-4505.	4.7	17
46	Complete Genome Sequence of the Facultative Anaerobic Magnetotactic Bacterium Magnetospirillum sp. strain AMB-1. DNA Research, 2005, 12, 157-166.	3.4	225
47	Assembly of G Protein-Coupled Receptors onto Nanosized Bacterial Magnetic Particles Using Mms16 as an Anchor Molecule. Applied and Environmental Microbiology, 2004, 70, 2880-2885.	3.1	58
48	Biotechnological application of nano-scale engineered bacterial magnetic particles. Journal of Materials Chemistry, 2004, 14, 2099.	6.7	70
49	Siderophore production of a periplasmic transport binding protein kinase gene defective mutant of Magnetospirillum magneticum AMB-1. Biochemical and Biophysical Research Communications, 2004, 323, 852-857.	2.1	22
50	Siderophore production by the magnetic bacteriumMagnetospirillum magneticumAMB-1. FEMS Microbiology Letters, 2003, 218, 371-375.	1.8	62
51	Genes and proteins involved in bacterial magnetic particle formation. Trends in Microbiology, 2003, 11, 536-541.	7.7	60
52	Characterization of aldehyde ferredoxin oxidoreductase gene defective mutant in Magnetospirillum magneticum AMB-1. Biochemical and Biophysical Research Communications, 2003, 303, 223-229.	2.1	30
53	Design and Application of a New Cryptic-Plasmid-Based Shuttle Vector for Magnetospirillum magneticum. Applied and Environmental Microbiology, 2003, 69, 4274-4277.	3.1	57
54	BIONANOMAGNET AND ITS APPLICATION., 2003,,.		0

Yoshiko Okamura

#	Article	IF	CITATIONS
55	BIONANOMAGNET AND ITS APPLICATION. International Journal of Nanoscience, 2002, 01, 383-389.	0.7	6
56	Review Molecular Mechanism of Bacterial Magnetite Formation and Its Application. Materials Research Society Symposia Proceedings, 2002, 724, N1.4.1.	0.1	3
57	A Magnetosome-specific GTPase from the Magnetic BacteriumMagnetospirillum magneticum AMB-1. Journal of Biological Chemistry, 2001, 276, 48183-48188.	3.4	58
58	Two-Dimensional Analysis of Proteins Specific to the Bacterial Magnetic Particle Membrane from Magnetospirillum sp. AMB-1. Applied Biochemistry and Biotechnology, 2000, 84-86, 441-446.	2.9	40
59	Cloning and Characterization of a Gene, mpsA, Encoding a Protein Associated with Intracellular Magnetic Particles from Magnetospirillum sp. Strain AMB-1. Biochemical and Biophysical Research Communications, 2000, 268, 932-937.	2.1	52