Zhi-Qing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/159634/publications.pdf

Version: 2024-02-01

172457 233421 5,234 43 29 45 citations h-index g-index papers 47 47 47 4216 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Suppression of angiotensin Il-activated NOX4/NADPH oxidase and mitochondrial dysfunction by preserving glucagon-like peptide-1 attenuates myocardial fibrosis and hypertension. European Journal of Pharmacology, 2022, 927, 175048.	3.5	11
2	Glucagon-Like Peptide-1 Analog Liraglutide Attenuates Pressure-Overload Induced Cardiac Hypertrophy and Apoptosis through Activating ATP Sensitive Potassium Channels. Cardiovascular Drugs and Therapy, 2021, 35, 87-101.	2.6	14
3	A Novel Mitochondrial Complex of Aldosterone Synthase, Steroidogenic Acute Regulatory Protein, and Tom22 Synthesizes Aldosterone in the Rat Heart. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 108-120.	2.5	7
4	Conservation of glucagon like peptide-1 level with liraglutide and linagilptin protects the kidney against angiotensin II-induced tissue fibrosis in rats. European Journal of Pharmacology, 2020, 867, 172844.	3.5	7
5	Steroidogenic acute regulatory protein/aldosterone synthase mediates angiotensin Il-induced cardiac fibrosis and hypertrophy. Molecular Biology Reports, 2020, 47, 1207-1222.	2.3	7
6	Exogenous supplement of glucagon like peptide-1 protects the heart against aortic banding induced myocardial fibrosis and dysfunction through inhibiting mTOR/p70S6K signaling and promoting autophagy. European Journal of Pharmacology, 2020, 883, 173318.	3.5	14
7	SAT-562 Angiotensin II Induces Aldosterone Synthesis in the Rat Heart Stressed by Angiotensin II. Journal of the Endocrine Society, 2020, 4, .	0.2	O
8	<p>Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats</p> . Drug Design, Development and Therapy, 2019, Volume 13, 2745-2757.	4.3	33
9	CD44 Deficiency in Mice Protects the Heart Against Angiotensin li-Induced Cardiac Fibrosis. Shock, 2019, 51, 372-380.	2.1	14
10	Curcumin inhibits cardiac hypertrophy and improves cardiovascular function via enhanced Na + /Ca 2+ exchanger expression after transverse abdominal aortic constriction in rats. Pharmacological Reports, 2018, 70, 60-68.	3.3	25
11	Postconditioning attenuates coronary perivascularÂand interstitial fibrosis through modulating angiotensin II receptors and angiotensin-converting enzyme 2 after myocardial infarction. Journal of Surgical Research, 2017, 211, 178-190.	1.6	4
12	Recruitment of macrophages from the spleen contributes to myocardial fibrosis and hypertension induced by angiotensin II. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2017, 18, 147032031770665.	1.7	26
13	Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor. Drug Design, Development and Therapy, 2017, Volume 11, 3019-3033.	4.3	30
14	Treatment with dietary cyclosporine has no direct effect on myocardial fibrosis and hypertension in mice. MOJ Drug Design Development $\&$ Therapy, 2017, 1 , .	0.1	0
15	Angiotensin II AT1 receptor alters ACE2 activity, eNOS expression and CD44-hyaluronan interaction in rats with hypertension and myocardial fibrosis. Life Sciences, 2016, 153, 141-152.	4.3	39
16	Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. Drug Design, Development and Therapy, 2015, 9, 6043.	4.3	56
17	Preservation of Glucagon-Like Peptide-1 Level Attenuates Angiotensin II-Induced Tissue Fibrosis by Altering AT1/AT2 Receptor Expression and Angiotensin-Converting Enzyme 2 Activity in Rat Heart. Cardiovascular Drugs and Therapy, 2015, 29, 243-255.	2.6	69
18	Attenuation of Inflammatory Response and Reduction in Infarct Size by Postconditioning Are Associated With Downregulation of Early Growth Response 1 During Reperfusion in Rat Heart. Shock, 2014, 41, 346-354.	2.1	37

#	Article	IF	Citations
19	Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. British Journal of Pharmacology, 2012, 167, 1550-1562.	5.4	119
20	Postconditioning in Reperfusion Injury: A Status Report. Cardiovascular Drugs and Therapy, 2010, 24, 265-279.	2.6	64
21	Attenuation of renal ischemia–reperfusion injury by postconditioning involves adenosine receptor and protein kinase C activation. Transplant International, 2010, 23, 217-226.	1.6	41
22	Improvement in Cardiac Function With Small Intestine Extracellular Matrix Is Associated With Recruitment of C-Kit Cells, Myofibroblasts, and Macrophages After Myocardial Infarction. Journal of the American College of Cardiology, 2010, 55, 1250-1261.	2.8	79
23	Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial KATP channels during reperfusion. Basic Research in Cardiology, 2008, 103, 472-484.	5.9	72
24	Evidence that cardioprotection by postconditioning involves preservation of myocardial opioid content and selective opioid receptor activation. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H1444-H1451.	3.2	88
25	Loss of Myocardial Ischemic Postconditioning in Adenosine A ₁ and Bradykinin B ₂ Receptors Gene Knockout Mice. Circulation, 2008, 118, S32-7.	1.6	65
26	INHIBITION OF MYOCARDIAL APOPTOSIS BY POSTCONDITIONING IS ASSOCIATED WITH ATTENUATION OF OXIDATIVE STRESS-MEDIATED NUCLEAR FACTOR-κκB TRANSLOCATION AND TNFαα RELEASE. Shock, 2008, 29, 761-768.	2.1	83
27	PAR-2 activation at the time of reperfusion salvages myocardium via an ERK1/2 pathway in in vivo rat hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2845-H2852.	3.2	29
28	Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Research in Cardiology, 2007, 102, 90-100.	5.9	65
29	Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention. Journal of Invasive Cardiology, 2007, 19, 424-30.	0.4	104
30	Postconditioning attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1583-1593.	4.9	161
31	Infarct-sparing effect of myocardial postconditioning is dependent on protein kinase C signalling. Cardiovascular Research, 2006, 70, 315-324.	3.8	116
32	Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovascular Research, 2005, 67, 124-133.	3.8	261
33	Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca ²⁺ overload. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H1900-H1908.	3.2	244
34	Postconditioning attenuates myocardial ischemia–reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovascular Research, 2004, 62, 74-85.	3.8	495
35	Oxidative stress-elicited myocardial apoptosis during reperfusion. Current Opinion in Pharmacology, 2004, 4, 159-165.	3.5	161
36	Myocardial protection with postconditioning is not enhanced by ischemic preconditioning. Annals of Thoracic Surgery, 2004, 78, 961-969.	1.3	170

ZHI-QING ZHAO

#	Article	IF	CITATIONS
37	Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H579-H588.	3.2	1,744
38	Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovascular Research, 2003, 59, 132-142.	3.8	130
39	Myocardial apoptosis and ischemic preconditioning. Cardiovascular Research, 2002, 55, 438-455.	3.8	160
40	Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 279-290.	4.9	170
41	Comparison of AMP579 and adenosine in inhibition of cell-cell interaction between human neutrophil and vascular endothelial cell. Drug Development Research, 2000, 49, 266-272.	2.9	11
42	Dynamic Progression of Contractile and Endothelial Dysfunction and Infarct Extension in the Late Phase of Reperfusion. Journal of Surgical Research, 2000, 94, 133-144.	1.6	95
43	Nitric Oxide and the Vascular Endothelium in Myocardial Ischemia-Reperfusion Injurya. Annals of the New York Academy of Sciences, 1999, 874, 354-370.	3.8	75