Damian Beben

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1595984/publications.pdf Version: 2024-02-01

DAMIAN REPEN

#	Article	IF	CITATIONS
1	Influence of Traffic-Induced Vibrations on Humans and Residential Building—A Case Study. International Journal of Environmental Research and Public Health, 2022, 19, 5441.	2.6	14
2	Seismic vulnerability of a soil-steel composite tunnel – Norway Tolpinrud Railway Tunnel Case Study. Tunnelling and Underground Space Technology, 2021, 110, 103808.	6.2	35
3	Influence of a Rejuvenator on Homogenization of an Asphalt Mixture with Increased Content of Reclaimed Asphalt Pavement in Lowered Technological Temperatures. Materials, 2021, 14, 2567.	2.9	6
4	A Case Study on the Noncontact Inventory of the Oldest European Cast-iron Bridge Using Terrestrial Laser Scanning and Photogrammetric Techniques. Remote Sensing, 2020, 12, 2745.	4.0	15
5	Soil-Steel Bridges. Geotechnical, Geological and Earthquake Engineering, 2020, , .	0.2	16
6	Study on the Restoration of a Masonry Arch Viaduct: Numerical Analysis and Lab Tests. Materials, 2020, 13, 1846.	2.9	5
7	Comparison of Non-Destructive Techniques for Technological Bridge Deflection Testing. Materials, 2020, 13, 1908.	2.9	26
8	Numerical analysis of soil-steel bridge. Budownictwo I Architektura, 2020, 13, 153-161.	0.3	0
9	Impact of Boundary Conditions on the Soil-Steel Arch Bridge Behaviour Under Seismic Excitation. Structural Integrity, 2020, , 136-144.	1.4	0
10	Seismic Response of Soil-Steel Bridge with the EPS Geofoams. , 2020, , 1043-1054.		0
11	Testing and Durability of Soil-Steel Bridges. Geotechnical, Geological and Earthquake Engineering, 2020, , 155-212.	0.2	0
12	Corrosion Problem of Soil-Steel Bridges. Geotechnical, Geological and Earthquake Engineering, 2020, , 119-154.	0.2	0
13	Selected Issues of Soil-Steel Bridge Design and Analysis. Geotechnical, Geological and Earthquake Engineering, 2020, , 17-118.	0.2	0
14	Numerical analysis of a soil-steel bridge during backfilling using various shell models. Engineering Structures, 2019, 196, 109358.	5.3	32
15	Application of EPS Geofoam to a Soil–Steel Bridge to Reduce Seismic Excitations. Geosciences (Switzerland), 2019, 9, 448.	2.2	22
16	The effect of mine induced tremors on seismic response of soil-steel bridges. MATEC Web of Conferences, 2018, 174, 04002.	0.2	4
17	Behaviour of corrugated steel plate bridge with high soil cover under seismic excitation. MATEC Web of Conferences, 2018, 174, 04003.	0.2	8
18	Experimental Testing of Soil-Steel Railway Bridge Under Normal Train Loads. Lecture Notes in Civil Engineering, 2018, , 805-815.	0.4	1

Damian Beben

#	Article	IF	CITATIONS
19	Displacements Monitoring of Suspension Bridge Using Geodetic Techniques. Lecture Notes in Civil Engineering, 2018, , 331-342.	0.4	1
20	Evaluation of the traffic impact on residential building. MATEC Web of Conferences, 2017, 107, 00063.	0.2	0
21	Dynamic testing of railway metal culvert using geodetic methods. MATEC Web of Conferences, 2017, 107, 00020.	0.2	2
22	THE ROLE OF BACKFILL QUALITY ON CORRUGATED STEEL PLATE CULVERT BEHAVIOUR. Baltic Journal of Road and Bridge Engineering, 2017, 12, 1-11.	0.8	8
23	Application of Interferometry Method for Dynamic Continuous Testing of Bridges. Periodica Polytechnica: Civil Engineering, 2016, , 387-395.	0.6	1
24	Crossings Construction as a Method of Animal Conservation. Transportation Research Procedia, 2016, 14, 474-483.	1.5	16
25	Finite element analysis of metal-soil bridge under static loads. , 2016, , 279-286.		0
26	NUMERICAL ANALYSIS OF CORRUGATED STEEL PLATE BRIDGE WITH REINFORCED CONCRETE RELIEVING SLAB. Journal of Civil Engineering and Management, 2015, 22, 585-596.	3.5	28
27	Backfill Corrosivity around Corrugated Steel Plate Culverts. Journal of Performance of Constructed Facilities, 2015, 29, .	2.0	14
28	Corrugated Steel Plate Culvert Response to Service Train Loads. Journal of Performance of Constructed Facilities, 2014, 28, 376-390.	2.0	28
29	Interferometric radar application for dynamic testing of bridge structures. , 2014, , 2289-2296.		4
30	Improved design of composite highway-bridges to enhance lifetime performance. Life-cycle of Civil Engineering Systems, 2014, , 2032-2039.	0.1	0
31	Ground Penetrating Radar Application to Testing of Reinforced Concrete Beams. Procedia Engineering, 2013, 65, 242-247.	1.2	5
32	Diagnosis of bedrock course and retaining wall using GPR. NDT and E International, 2013, 59, 77-85.	3.7	8
33	Dynamic amplification factors of corrugated steel plate culverts. Engineering Structures, 2013, 46, 193-204.	5.3	39
34	Experimental Study on the Dynamic Impacts of Service Train Loads on a Corrugated Steel Plate Culvert. Journal of Bridge Engineering, 2013, 18, 339-346.	2.9	31
35	Field Performance of Corrugated Steel Plate Road Culvert under Normal Live-Load Conditions. Journal of Performance of Constructed Facilities, 2013, 27, 807-817.	2.0	31

GPR testing of reinforced concrete viaduct beams. , 2013, , 245-252.

Damian Beben

#	Article	IF	CITATIONS
37	CROSSINGS FOR ANIMALS – AN EFFECTIVE METHOD OF WILD FAUNA CONSERVATION GYVŪNŲ PERĖJOS EFEKTYVUS FAUNOS APSAUGOS METODAS / ĐŸÐ•ĐĐ•Đ¥ĐžĐ" Đ"Đ>Đ⁻ Đ–Đ⁻Đ'ĐžĐ¢ĐĐ«Đ¥ – ĐĐ ĐĐ •ĐšĐ¢Đ~ Management, 2012, 20, 86-96.	– Đ'Đ Đ @Đ™	ĐœĐ•Đ¢Đž8
38	ldentification of viaduct beam parameters using the Ground Penetrating Radar (GPR) technique. NDT and E International, 2012, 49, 18-26.	3.7	22
39	Numerical study of performance of soil-steel bridge during soil backfilling. Structural Engineering and Mechanics, 2012, 42, 571-587.	1.0	14
40	Application of the interferometric radar for dynamic tests of corrugated steel plate (CSP) culvert. NDT and E International, 2011, 44, 405-412.	3.7	44
41	Influence of selected hydrophobic agents on some properties of autoclaving cellular concrete (ACC). Construction and Building Materials, 2011, 25, 282-287.	7.2	16
42	Static tests on a soil–steel bridge structure with a relieving slab. Structure and Infrastructure Engineering, 2010, 6, 329-346.	3.7	6
43	Dynamic testing of a soil-steel bridge. Structural Engineering and Mechanics, 2010, 35, 301-314.	1.0	14
44	Dynamic analysis of soil-steel arch road bridges. Bridge Maintenance, Safety and Management, 2010, , 579-579.	0.1	0
45	Rehabilitation of old arch bridges using corrugated shell structures. Bridge Maintenance, Safety and Management, 2010, , 581-581.	0.1	0
46	Behaviour of corrugated plate culvert under backfilling loads. Steel Construction, 2009, 2, 188-202.	0.8	0
47	Numerical analysis of a soil-steel bridge structure. Baltic Journal of Road and Bridge Engineering, 2009, 4, 13-21.	0.8	15
48	Static Load Tests of a Corrugated Steel Plate Arch with Relieving Slab. Journal of Bridge Engineering, 2008, 13, 362-376.	2.9	13
49	Dynamic testing of a corrugated steel arch bridge. Canadian Journal of Civil Engineering, 2008, 35, 246-257.	1.3	22
50	Full-scale field tests of soil-steel bridge structure in two stages of its construction. Archives of Civil and Mechanical Engineering, 2006, 6, 57-76.	3.8	3
51	Static Load Tests of a Road Bridge with a Flexible Structure Made from Super Cor Type Steel Corrugated Plates. Journal of Bridge Engineering, 2005, 10, 604-621.	2.9	22
52	Tests During Three Stages of Construction of a Road Bridge with a Flexible Load-Carrying Structure Made of Super Cor Type Steel Corrugated Plates Interacting with Soil. Journal of Bridge Engineering, 2005, 10, 570-591.	2.9	11
53	Research on Steel Shell of a Road Bridge Made of Corrugated Plates during Backfilling. Journal of Bridge Engineering, 2005, 10, 592-603.	2.9	22
54	The impact of backfill quality on soil-steel composite bridge response under seismic excitation. IOP Conference Series: Materials Science and Engineering, 0, 419, 012040.	0.6	5

#	Article	IF	CITATIONS
55	Hybrid measurement techniques used to a study of historic cast iron suspension bridge. IOP Conference Series: Materials Science and Engineering, 0, 419, 012013.	0.6	1