
Shom Goel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1595254/publications.pdf Version: 2024-02-01

SHOM COFL

#	Article	IF	CITATIONS
1	Normalization of the Vasculature for Treatment of Cancer and Other Diseases. Physiological Reviews, 2011, 91, 1071-1121.	13.1	1,275
2	CDK4/6 inhibition triggers anti-tumour immunity. Nature, 2017, 548, 471-475.	13.7	998
3	Vascular Normalization as an Emerging Strategy to Enhance Cancer Immunotherapy. Cancer Research, 2013, 73, 2943-2948.	0.4	535
4	Overcoming Therapeutic Resistance in HER2-Positive Breast Cancers with CDK4/6 Inhibitors. Cancer Cell, 2016, 29, 255-269.	7.7	356
5	TGF-Î ² blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16618-16623.	3.3	287
6	CDK4/6 Inhibition in Cancer: Beyond Cell Cycle Arrest. Trends in Cell Biology, 2018, 28, 911-925.	3.6	273
7	Vascular Normalization as a Therapeutic Strategy for Malignant and Nonmalignant Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006486-a006486.	2.9	266
8	CDK4/6 inhibition in breast cancer: current practice and future directions. Therapeutic Advances in Medical Oncology, 2018, 10, 175883591878645.	1.4	218
9	Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14325-14330.	3.3	206
10	Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3725-3730.	3.3	169
11	Abemaciclib plus trastuzumab with or without fulvestrant versus trastuzumab plus standard-of-care chemotherapy in women with hormone receptor-positive, HER2-positive advanced breast cancer (monarcHER): a randomised, open-label, phase 2 trial. Lancet Oncology, The, 2020, 21, 763-775.	5.1	144
12	Combined targeting of HER2 and VEGFR2 for effective treatment of <i>HER2</i> -amplified breast cancer brain metastases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3119-27.	3.3	131
13	Targeting CDK4 and CDK6 in cancer. Nature Reviews Cancer, 2022, 22, 356-372.	12.8	125
14	The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. Npj Breast Cancer, 2021, 7, 150.	2.3	112
15	Blockade of MMP14 Activity in Murine Breast Carcinomas: Implications for Macrophages, Vessels, and Radiotherapy. Journal of the National Cancer Institute, 2015, 107, .	3.0	106
16	Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer. Npj Breast Cancer, 2020, 6, 17.	2.3	106
17	Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine, 2016, 22, 723-726.	15.2	105
18	Effects of Vascular-Endothelial Protein Tyrosine Phosphatase Inhibition on Breast Cancer Vasculature and Metastatic Progression. Journal of the National Cancer Institute, 2013, 105, 1188-1201.	3.0	101

Shom Goel

#	Article	IF	CITATIONS
19	An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. ELife, 2018, 7, .	2.8	91
20	Report on computational assessment of Tumor Infiltrating Lymphocytes from the International Immuno-Oncology Biomarker Working Group. Npj Breast Cancer, 2020, 6, 16.	2.3	90
21	The brain microenvironment mediates resistance in luminal breast cancer to PI3K inhibition through HER3 activation. Science Translational Medicine, 2017, 9, .	5.8	89
22	C-X-C receptor type 4 promotes metastasis by activating p38 mitogen-activated protein kinase in myeloid differentiation antigen (Gr-1)-positive cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 302-307.	3.3	85
23	Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers. Cancer Cell, 2017, 31, 576-590.e8.	7.7	84
24	Inhibition of CDK4/6 Promotes CD8 T-cell Memory Formation. Cancer Discovery, 2021, 11, 2564-2581.	7.7	58
25	CDK4/6 Inhibition in Breast Cancer: Mechanisms of Response and Treatment Failure. Current Breast Cancer Reports, 2017, 9, 26-33.	0.5	55
26	LHRH agonists for adjuvant therapy of early breast cancer in premenopausal women. The Cochrane Library, 2009, , CD004562.	1.5	53
27	Targeting Vascular Endothelial-Cadherin in Tumor-Associated Blood Vessels Promotes T-cell–Mediated Immunotherapy. Cancer Research, 2017, 77, 4434-4447.	0.4	52
28	CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity. Nature Cancer, 2021, 2, 34-48.	5.7	48
29	Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Research, 2022, 24, 17.	2.2	45
30	Normalization of the tumor vasculature through oncogenic inhibition: An emerging paradigm in tumor biology. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1214.	3.3	34
31	Decline in Left Ventricular Ejection Fraction Following Anthracyclines PredictsÂTrastuzumab Cardiotoxicity. JACC: Heart Failure, 2019, 7, 795-804.	1.9	28
32	Ribociclib Plus Trastuzumab in Advanced HER2-Positive Breast Cancer: Results of a Phase 1b/2 Trial. Clinical Breast Cancer, 2019, 19, 399-404.	1.1	27
33	Exploratory analysis of cardiac biomarkers in women with normal cardiac function receiving trastuzumab for breast cancer. Asia-Pacific Journal of Clinical Oncology, 2011, 7, 276-280.	0.7	25
34	Morphological changes and stress responses in neurons in cerebral cortex infiltrated by diffuse astrocytoma. Neuropathology, 2003, 23, 262-270.	0.7	24
35	Ovarian suppression for adjuvant treatment of hormone receptor-positive early breast cancer. The Cochrane Library, 2020, 3, CD013538.	1.5	23
36	Enhanced toxicity with CDK 4/6 inhibitors and palliative radiotherapy: Non-consecutive case series and review of the literature. Translational Oncology, 2021, 14, 100939.	1.7	18

SHOM GOEL

#	Article	IF	CITATIONS
37	PIK3CA mutations in HER2-positive breast cancer: an ongoing conundrum. Annals of Oncology, 2016, 27, 1368-1372.	0.6	17
38	Phase 1b clinical trial of ado-trastuzumab emtansine and ribociclib for HER2-positive metastatic breast cancer, 2021, 7, 103.	2.3	17
39	Deciphering the Role of Phosphatidylinositol 3-Kinase Mutations in Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer. Journal of Clinical Oncology, 2015, 33, 1407-1409.	0.8	10
40	Rational use of trastuzumab in metastatic and locally advanced breast cancer: Implications of recent research. Breast, 2011, 20, 101-110.	0.9	9
41	A phase II study of preoperative (preop) bevacizumab (bev) followed by dose-dense (dd) doxorubicin (A)/cyclophosphamide (C)/paclitaxel (T) in combination with bev in HER2-negative operable breast cancer (BC) Journal of Clinical Oncology, 2012, 30, 1026-1026.	0.8	9
42	Troponin I As a Predictor for Trastuzumab-Related Cardiotoxicity: Current Data Do Not Provide Mechanistic Insights or Allow for Incorporation Into Clinical Practice. Journal of Clinical Oncology, 2011, 29, e175-e176.	0.8	8
43	CDK4/6 inhibitors in breast cancer: a role in triple-negative disease?. Lancet Oncology, The, 2019, 20, 1479-1481.	5.1	7
44	CDK4/6 inhibition: the late harvest cycle begins. Oncotarget, 2016, 7, 48854-48856.	0.8	4
45	Abstract P3-14-03: A phase 1b study of the CDK4/6 inhibitor ribociclib in combination with the PD-1 inhibitor spartalizumab in patients with hormone receptor-positive metastatic breast cancer (HR+) Tj ETQq1 1	0.784314 r	gBƁ/Overloci
46	Phase II study of gemcitabine and docetaxel in combination for the treatment of metastatic breast cancer. Asia-Pacific Journal of Clinical Oncology, 2009, 5, 32-38.	0.7	1
47	Transforming growth factor \hat{I}^2 in breast cancer: another new trick for the old dog. Immunology and Cell Biology, 2021, 99, 249-251.	1.0	1
48	Cancer drugs in the real world. Asia-Pacific Journal of Clinical Oncology, 2009, 5, 1-3.	0.7	0
49	Optimizing the Management of Metastatic HER2-Positive Breast Cancer. Current Breast Cancer Reports, 2015, 7, 190-202.	0.5	0
50	Adjuvant Chemotherapy in Breast Cancer. , 2015, , 335-351.		0
51	Trastuzumab-related cardiotoxicity: what do we know in 2020?. Translational Cancer Research, 2020, 9, 4052-4055.	0.4	0
52	Differential changes in tissue biomarkers after bevacizumab (BEV) alone in a neoadjuvant study of BEV and chemotherapy in ER+ breast cancer (BC) versus triple-negative breast cancer (TNBC) patients (pts) Journal of Clinical Oncology, 2013, 31, 1065-1065.	0.8	0
53	POINT: HER2-Targeted Combinations in Advanced HER2-Positive Breast Cancer. Oncology, 2015, 29, 797-8, 802.	0.4	0
54	Abstract OT2-19-01: Presurgical treatment with ribociclib and letrozole in patients with locally advanced breast cancer: The NEOLETRIB study. Cancer Research, 2022, 82, OT2-19-01-OT2-19-01.	0.4	0