List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1595080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution mapping of metal ions reveals principles of surface layer assembly in Caulobacter crescentus cells. Structure, 2022, 30, 215-228.e5.	3.3	12
2	Heterotypic interactions drive antibody synergy against a malaria vaccine candidate. Nature Communications, 2022, 13, 933.	12.8	23
3	Quantifying and comparing radiation damage in the Protein Data Bank. Nature Communications, 2022, 13, 1314.	12.8	18
4	Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116218119.	7.1	10
5	Submission of structural biology data for review purposes. IUCrJ, 2022, 9, 1-2.	2.2	3
6	Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSEâ€3D. Protein Science, 2021, 30, 8-19.	7.6	4
7	Zinc determines dynamical properties and aggregation kinetics of human insulin. Biophysical Journal, 2021, 120, 886-898.	0.5	15
8	Structural and Electronic Effects of X-ray Irradiation on Prototypical [M(COD)Cl] ₂ Catalysts. Journal of Physical Chemistry A, 2021, 125, 7473-7488.	2.5	11
9	Radiation damage to biological samples: still a pertinent issue. Journal of Synchrotron Radiation, 2021, 28, 1278-1283.	2.4	8
10	Submission of structural biology data for review purposes. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 435-436.	0.8	0
11	Submission of structural biology data for review purposes. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1477-1478.	2.3	1
12	High-Throughput PIXE as an Essential Quantitative Assay for Accurate Metalloprotein Structural Analysis: Development and Application. Journal of the American Chemical Society, 2020, 142, 185-197.	13.7	24
13	Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4142-4151.	7.1	84
14	<i>RADDOSE-XFEL</i> : femtosecond time-resolved dose estimates for macromolecular X-ray free-electron laser experiments. Journal of Applied Crystallography, 2020, 53, 549-560.	4.5	23
15	New Section Editor of Acta Cryst. D. Acta Crystallographica Section D: Structural Biology, 2020, 76, 702-702.	2.3	0
16	Three new Co-editors appointed to Acta Crystallographica Section D, Structural Biology. Acta Crystallographica Section D: Structural Biology, 2020, 76, 612-612.	2.3	0
17	Rosalind Franklin 1920–1958. Acta Crystallographica Section D: Structural Biology, 2020, 76, 698-701.	2.3	1
18	Summary of lecture at biophysics and structural biology at synchrotrons workshop Crystallography 101: diffraction theory and space groups. Biophysical Reviews, 2019, 11, 525-528.	3.2	2

ELSPETH F GARMAN

#	Article	IF	CITATIONS
19	Summary of lecture and practical session at Biophysics and Structural Biology at Synchrotrons workshop: cryo-cooling in macromolecular crystallography—why and how?. Biophysical Reviews, 2019, 11, 539-541.	3.2	2
20	The potential benefits of using higher X-ray energies for macromolecular crystallography. Journal of Synchrotron Radiation, 2019, 26, 922-930.	2.4	15
21	Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nature Microbiology, 2019, 4, 2074-2081.	13.3	20
22	Summary of case study lecture at Biophysics and Structural Biology at Synchrotrons Workshop Triumph over Adversity: structure of arylamine N-acetyltransferase from M. tuberculosis. Biophysical Reviews, 2019, 11, 535-537.	3.2	1
23	Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Journal of Biological Chemistry, 2019, 294, 17117-17130.	3.4	30
24	Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both. Journal of Synchrotron Radiation, 2019, 26, 931-944.	2.4	12
25	X-ray radiation damage to biological samples: recent progress. Journal of Synchrotron Radiation, 2019, 26, 907-911.	2.4	25
26	Radiation-damage investigation of a DNA 16-mer. Journal of Synchrotron Radiation, 2019, 26, 998-1009.	2.4	7
27	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Journal of Applied Crystallography, 2019, 52, 495-497.	4.5	1
28	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. IUCrJ, 2019, 6, 341-343.	2.2	8
29	Radiation damage in small-molecule crystallography: fact not fiction. IUCrJ, 2019, 6, 703-713.	2.2	32
30	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 321-323.	0.8	3
31	Findable Accessible Interoperable Re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallographica Section D: Structural Biology, 2019, 75, 455-457.	2.3	10
32	Estimate your dose: RADDOSEâ€3D. Protein Science, 2018, 27, 217-228.	7.6	93
33	<i>RIDL</i> : a tool to investigate radiation-induced density loss. Journal of Applied Crystallography, 2018, 51, 952-962.	4.5	15
34	Chapter 4. Radiation Damage in Macromolecular Crystallography. Chemical Biology, 2018, , 88-116.	0.2	1
35	<i>RABDAM</i> : quantifying specific radiation damage in individual protein crystal structures. Journal of Applied Crystallography, 2018, 51, 552-559.	4.5	19
36	X-ray radiation damage to biological macromolecules: further insights. Journal of Synchrotron Radiation, 2017, 24, 1-6.	2.4	53

ELSPETH F GARMAN

#	Article	IF	CITATIONS
37	OH cleavage from tyrosine: debunking a myth. Journal of Synchrotron Radiation, 2017, 24, 7-18.	2.4	19
38	Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets. Nature Communications, 2017, 8, 14690.	12.8	171
39	"To Cross-Seed or Not To Cross-Seed― A Pilot Study Using Metallo-β-lactamases. Crystal Growth and Design, 2017, 17, 913-924.	3.0	8
40	Development of tools to automate quantitative analysis of radiation damage in SAXS experiments. Journal of Synchrotron Radiation, 2017, 24, 63-72.	2.4	28
41	Radiation Damage in Macromolecular Crystallography. Methods in Molecular Biology, 2017, 1607, 467-489.	0.9	47
42	The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C. BMC Biology, 2016, 14, 109.	3.8	10
43	Characterisation of the membrane topology and molecular structure of LITAF to provide insights into the molecular pathogenesis of Charcot-Marie-Tooth disease type 1C. Lancet, The, 2016, 387, S87.	13.7	0
44	Radiation damage within nucleoprotein complexes studied by macromolecular X-ray crystallography. Radiation Physics and Chemistry, 2016, 128, 118-125.	2.8	4
45	An overview of heavy-atom derivatization of protein crystals. Acta Crystallographica Section D: Structural Biology, 2016, 72, 303-318.	2.3	40
46	RNA protects a nucleoprotein complex against radiation damage. Acta Crystallographica Section D: Structural Biology, 2016, 72, 648-657.	2.3	18
47	X-ray crystal structure analysis of magnetically oriented microcrystals of lysozyme at 1.8â€Ã resolution. Journal of Applied Crystallography, 2016, 49, 457-461.	4.5	8
48	Radiation Damage in Macromolecular Crystallography. Synchrotron Radiation News, 2015, 28, 15-19.	0.8	5
49	The Nobel Science: One Hundred Years of Crystallography. Interdisciplinary Science Reviews, 2015, 40, 244-264.	1.4	14
50	Radiation damage to nucleoprotein complexes inÂmacromolecular crystallography. Journal of Synchrotron Radiation, 2015, 22, 213-224.	2.4	21
51	Radiation damage to macromolecules: kill or cure?. Journal of Synchrotron Radiation, 2015, 22, 195-200.	2.4	26
52	Identifying and quantifying radiation damage atÂtheÂatomic level. Journal of Synchrotron Radiation, 2015, 22, 201-212.	2.4	51
53	Antiviral adhesion molecular mechanisms for influenza: W. G. Laver's lifetime obsession. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140034.	4.0	3
54	Developments in X-ray Crystallographic Structure Determination of Biological Macromolecules. Science, 2014, 343, 1102-1108.	12.6	119

#	Article	IF	CITATIONS
55	A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. Science, 2014, 345, 1170-1173.	12.6	80
56	VARP Is Recruited on to Endosomes by Direct Interaction with Retromer, Where Together They Function in Export to the Cell Surface. Developmental Cell, 2014, 29, 591-606.	7.0	110
57	Optimizing the spatial distribution of dose in X-ray macromolecular crystallography. Journal of Synchrotron Radiation, 2013, 20, 49-57.	2.4	35
58	To scavenge or not to scavenge, that is STILL theÂquestion. Journal of Synchrotron Radiation, 2013, 20, 23-36.	2.4	33
59	Radiation damage to biological macromolecules: some answers and more questions. Journal of Synchrotron Radiation, 2013, 20, 1-6.	2.4	21
60	<i>RADDOSE-3D</i> : time- and space-resolved modelling of dose in macromolecular crystallography. Journal of Applied Crystallography, 2013, 46, 1225-1230.	4.5	200
61	Structure of arylamine <i>N</i> -acetyltransferase from <i>Mycobacterium tuberculosis</i> determined by cross-seeding with the homologous protein from <i>M. marinum</i> : triumph over adversity. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1433-1446.	2.5	24
62	Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2381-2394.	2.5	51
63	Predicting the X-ray lifetime of protein crystals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20551-20556.	7.1	65
64	Elemental Analysis of Proteins by Proton Induced X-ray Emission (microPIXE). NATO Science for Peace and Security Series A: Chemistry and Biology, 2013, , 79-89.	0.5	1
65	Radiation Damage in Macromolecular Crystallography: What Is It and Why Do We Care?. NATO Science for Peace and Security Series A: Chemistry and Biology, 2013, , 69-77.	0.5	3
66	Multigrain crystallography. Zeitschrift Für Kristallographie, 2012, 227, 63-78.	1.1	95
67	Piperidinols That Show Anti-Tubercular Activity as Inhibitors of Arylamine N-Acetyltransferase: An Essential Enzyme for Mycobacterial Survival Inside Macrophages. PLoS ONE, 2012, 7, e52790.	2.5	27
68	Structural changes caused by radiation-induced reduction and radiolysis: the effect of X-ray absorbed dose in a fungal multicopper oxidase. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 564-577.	2.5	48
69	Louise Napier Johnson (1940–2012). Biochemist, 2012, 34, 43-44.	0.5	Ο
70	Simultaneous X-ray diffraction from multiple single crystals of macromolecules. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 608-618.	2.5	13
71	Effective scavenging at cryotemperatures: furtherÂincreasing the dose tolerance of protein crystals. Journal of Synchrotron Radiation, 2011, 18, 346-357.	2.4	39
72	Macromolecular crystallography radiation damage research: what's new?. Journal of Synchrotron Radiation, 2011, 18, 313-317.	2.4	15

#	Article	IF	CITATIONS
73	Probing the architecture of the Mycobacterium marinum arylamine N-acetyltransferase active site. Protein and Cell, 2010, 1, 384-392.	11.0	24
74	Know your dose: <i>RADDOSE</i> . Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 381-388.	2.5	84
75	Radiation damage in macromolecular crystallography: what is it and why should we care?. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 339-351.	2.5	299
76	Mechanism for the Hydrolysis of a Sulfur-Sulfur Bond Based on the Crystal Structure of the Thiosulfohydrolase SoxB. Journal of Biological Chemistry, 2009, 284, 21707-21718.	3.4	37
77	The binding of haem and zinc in the 1.9ÂÃ X-ray structure of Escherichia coli bacterioferritin. Journal of Biological Inorganic Chemistry, 2009, 14, 201-207.	2.6	20
78	Determination of X-ray flux using silicon pin diodes. Journal of Synchrotron Radiation, 2009, 16, 143-151.	2.4	81
79	Absorbed dose calculations for macromolecular crystals: improvements to <i>RADDOSE</i> . Journal of Synchrotron Radiation, 2009, 16, 152-162.	2.4	129
80	Colouring cryo-cooled crystals: online microspectrophotometry. Journal of Synchrotron Radiation, 2009, 16, 163-172.	2.4	69
81	Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay. Journal of Synchrotron Radiation, 2009, 16, 205-216.	2.4	36
82	Radiation damage in protein crystals examined under various conditions by different methods. Journal of Synchrotron Radiation, 2009, 16, 129-132.	2.4	36
83	Response to Krumrey'sComments onDetermination of X-ray flux using silicon pin diodesby R. L. Owenet al.(2009).J. Synchrotron Rad.16, 143–153. Journal of Synchrotron Radiation, 2009, 16, 691-692.	2.4	0
84	The Crystal Structure of the Escherichia coli RNase E Apoprotein and a Mechanism for RNA Degradation. Structure, 2008, 16, 1238-1244.	3.3	74
85	Crystal structures of fibronectin-binding sites from <i>Staphylococcus aureus</i> FnBPA in complex with fibronectin domains. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12254-12258.	7.1	116
86	X-Ray Data Collection From Macromolecular Crystals. , 2007, 364, 63-94.		3
87	Cryocrystallography of Macromolecules: Practice and Optimization. , 2007, 364, 1-18.		18
88	Crystal Structure and Function of the Zinc Uptake Regulator FurB from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2007, 282, 9914-9922.	3.4	121
89	The Solution and Crystal Structures of a Module Pair from the Staphylococcus aureus-Binding Site of Human Fibronectin—A Tale with a Twist. Journal of Molecular Biology, 2007, 368, 833-844.	4.2	34
90	Radioprotectant screening for cryocrystallography. Journal of Synchrotron Radiation, 2007, 14, 73-83.	2.4	60

#	Article	IF	CITATIONS
91	Progress in research into radiation damage in cryo-cooled macromolecular crystals. Journal of Synchrotron Radiation, 2007, 14, 1-3.	2.4	34
92	A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding. BMC Structural Biology, 2007, 7, 24.	2.3	23
93	Observation of Decreased Radiation Damage at Higher Dose Rates in Room Temperature Protein Crystallography. Structure, 2007, 15, 1531-1541.	3.3	121
94	Macromolecular cryo-crystallography. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 25-40.	0.1	2
95	Effect of Irradiation-Induced Disorder on the Conductivity and Critical Temperature of the Organic Superconductorκâ^'(BEDTâ^'TTF)2Cu(SCN)2. Physical Review Letters, 2006, 96, 177002.	7.8	86
96	Cryocooling and radiation damage in macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 2006, 62, 32-47.	2.5	144
97	HDAC6–p97/VCP controlled polyubiquitin chain turnover. EMBO Journal, 2006, 25, 3357-3366.	7.8	248
98	Radiation damage in macromolecular cryocrystallography. Current Opinion in Structural Biology, 2006, 16, 624-629.	5.7	134
99	The Structures of Frataxin Oligomers Reveal the Mechanism for the Delivery and Detoxification of Iron. Structure, 2006, 14, 1535-1546.	3.3	78
100	Experimental determination of the radiation dose limit for cryocooled protein crystals. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4912-4917.	7.1	366
101	SARS Proteomics Reveals Viral Secrets. Structure, 2005, 13, 1582-1583.	3.3	0
102	Elemental analysis of proteins by microPIXE. Progress in Biophysics and Molecular Biology, 2005, 89, 173-205.	2.9	81
103	A new method for predetermining the diffraction quality of protein crystals: using SOAP as a selection tool. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 130-140.	2.5	12
104	Parameters affecting the X-ray dose absorbed by macromolecular crystals. Journal of Synchrotron Radiation, 2005, 12, 268-275.	2.4	70
105	Towards an understanding of radiation damage in cryocooled macromolecular crystals. Journal of Synchrotron Radiation, 2005, 12, 257-260.	2.4	121
106	"Zn-Linkâ€ŧ A Metal-Sharing Interface that Organizes the Quaternary Structure and Catalytic Site of the Endoribonuclease, RNase Eâ€. Biochemistry, 2005, 44, 4667-4675.	2.5	47
107	The Structure, Function, and Inhibition of Influenza Virus Neuraminidase. , 2005, , 247-267.		17
108	The Three-dimensional Structure of the N-Acetylglucosamine-6-phosphate Deacetylase, NagA, from Bacillus subtilis. Journal of Biological Chemistry, 2004, 279, 2809-2816.	3.4	60

#	Article	IF	CITATIONS
109	Crystallization, microPIXE and preliminary crystallographic analysis of the complex between the third KH domain of hnRNP K and single-stranded DNA. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 784-787.	2.5	10
110	Twinned or not twinned, that is the question: crystallization and preliminary crystallographic analysis of the2F13F1 module pair of human fibronectin. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1341-1345.	2.5	4
111	X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose. Journal of Applied Crystallography, 2004, 37, 513-522.	4.5	178
112	Temperature characteristics of crystal storage devices in a CP100 dry shipping Dewar. Journal of Applied Crystallography, 2004, 37, 1000-1003.	4.5	6
113	Controlling Influenza by Inhibiting the Viruss Neuraminidase. Current Drug Targets, 2004, 5, 119-136.	2.1	59
114	'Cool' crystals: macromolecular cryocrystallography and radiation damage. Current Opinion in Structural Biology, 2003, 13, 545-551.	5.7	119
115	Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Molecular Microbiology, 2003, 47, 903-915.	2.5	304
116	Heavy-atom derivatization. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1903-1913.	2.5	48
117	Glucocorticoid Receptor-like Zn(Cys)4 Motifs in Bsll Restriction Endonuclease. Journal of Molecular Biology, 2003, 334, 595-603.	4.2	8
118	Cryocooling of Macromolecular Crystals: Optimization Methods. Methods in Enzymology, 2003, 368, 188-216.	1.0	33
119	Pandemic influenza: its origin and control. Microbes and Infection, 2002, 4, 1309-1316.	1.9	36
120	Physical and chemical considerations of damage induced in protein crystals by synchrotron radiation: a radiation chemical perspective. Journal of Synchrotron Radiation, 2002, 9, 329-332.	2.4	83
121	Radiation damage to crystalline biological molecules: current view. Journal of Synchrotron Radiation, 2002, 9, 327-328.	2.4	23
122	Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography. Journal of Synchrotron Radiation, 2002, 9, 347-354.	2.4	81
123	Blu-Iceand theDistributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. Journal of Synchrotron Radiation, 2002, 9, 401-406.	2.4	1,018
124	A 1.8 Ã resolution structure of pig muscle 3-phosphoglycerate kinase with bound MgADP and 3-phosphoglycerate in open conformation: new insight into the role of the nucleotide in domain closure11Edited by R. Huber. Journal of Molecular Biology, 2001, 306, 499-511.	4.2	60
125	VIROLOGY: Enhanced: The Origin and Control of Pandemic Influenza. Science, 2001, 293, 1776-1777.	12.6	46
126	Modelling heating effects in cryocooled protein crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467-468, 1380-1383.	1.6	13

#	Article	IF	CITATIONS
127	Limitations in macromolecular crystallography due to radiation damage. AIP Conference Proceedings, 2000, , .	0.4	0
128	Mutations at Critical N-Glycosylation Sites Reduce Tyrosinase Activity by Altering Folding and Quality Control. Journal of Biological Chemistry, 2000, 275, 8169-8175.	3.4	113
129	Identification of Novel Purine and Pyrimidine Cyclin-Dependent Kinase Inhibitors with Distinct Molecular Interactions and Tumor Cell Growth Inhibition Profiles. Journal of Medicinal Chemistry, 2000, 43, 2797-2804.	6.4	203
130	RECENT BIOMEDICAL APPLICATIONS OF THE OXFORD SCANNING PROTON MICROPROBE. International Journal of PIXE, 1999, 09, 199-216.	0.4	6
131	Cool data: quantity AND quality. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1641-1653.	2.5	119
132	Leaving no element of doubt: analysis of proteins using microPIXE. Structure, 1999, 7, R291-R299.	3.3	38
133	Demystifying the synchrotron trip: a first time user's guide. Structure, 1999, 7, R111-R121.	3.3	18
134	The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 Ã resolution and 100 K: The role of the water structure and its contribution to binding. Protein Science, 1998, 7, 915-927.	7.6	85
135	Haem-ligand switching during catalysis in crystals of a nitrogen-cycle enzyme. Nature, 1997, 389, 406-412.	27.8	294
136	A Single Sequence Change Destabilizes the Influenza Virus Neuraminidase Tetramer. Virology, 1997, 236, 66-75.	2.4	42
137	Macromolecular Cryocrystallography. Journal of Applied Crystallography, 1997, 30, 211-237.	4.5	242
138	The Structures ofSalmonella typhimuriumLT2 Neuraminidase and its Complexes with Three Inhibitors at High Resolution. Journal of Molecular Biology, 1996, 259, 264-280.	4.2	83
139	Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure, 1995, 3, 467-482.	3.3	162
140	The crystal structure of cyclin A. Structure, 1995, 3, 1235-1247.	3.3	183
141	Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure, 1994, 2, 535-544.	3.3	207
142	The growth and characterization of crystals of human immunodeficiency virus (HIV) reverse transcriptase. Journal of Crystal Growth, 1993, 126, 261-269.	1.5	10
143	A design of crystal mounting cell that allows the controlled variation of humidity at the protein crystal during X-ray diffraction. Journal of Applied Crystallography, 1993, 26, 465-466.	4.5	13
144	X-ray crystallographic structure of a papain-leupeptin complex. FEBS Letters, 1993, 315, 38-42.	2.8	114

#	Article	IF	CITATIONS
145	Crystallization and Preliminary X-ray Studies of Influenza A Virus Neuraminidase of Subtypes N5, N6, N8 and N9. Journal of Molecular Biology, 1993, 230, 345-348.	4.2	19
146	Crystallization and preliminary X-ray study of a lipase from Pseudomonas glumae. Journal of Molecular Biology, 1992, 224, 281-282.	4.2	28
147	Crystal structure of a berenil-d(CGCAAATTTGCG) complex. Journal of Molecular Biology, 1992, 226, 481-490.	4.2	103
148	Purification, crystallization and preliminary crystallographic study of neuraminidase from Vibrio cholerae and Salmonella typhimurium LT2. Journal of Molecular Biology, 1992, 226, 1287-1290.	4.2	33
149	Structure of monoclinic papain at 1.60 Ã resolution. Acta Crystallographica Section B: Structural Science, 1992, 48, 59-67.	1.8	54