
Roshan Deen Gr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Utilising inorganic nanocarriers for gene delivery. Biomaterials Science, 2016, 4, 70-86.	2.6	297
2	Structural Development of Self Nano Emulsifying Drug Delivery Systems (SNEDDS) During In Vitro Lipid Digestion Monitored by Small-angle X-ray Scattering. Pharmaceutical Research, 2007, 24, 1844-1853.	1.7	109
3	Poly(N-acryloyl-Nâ€~-propylpiperazine): A New Stimuli-Responsive Polymer. Macromolecules, 2000, 33, 7893-7897.	2.2	107
4	New stimuli-responsive copolymers of N -acryloyl- N ′-alkyl piperazine and methyl methacrylate and their hydrogels. Polymer, 2001, 42, 65-69.	1.8	79
5	Anisotropic Crystal Growth Kinetics of Anatase TiO ₂ Nanoparticles Synthesized in a Nonaqueous Medium. Chemistry of Materials, 2010, 22, 6044-6055.	3.2	77
6	Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Applied Surface Science, 2011, 258, 890-897.	3.1	65
7	Stimuli-Responsive Cationic Hydrogels in Drug Delivery Applications. Gels, 2018, 4, 13.	2.1	64
8	Effect of surfactant and heat treatment on morphology, surface area and crystallinity in hydroxyapatite nanocrystals. Ceramics International, 2013, 39, 39-50.	2.3	53
9	Collapse of Linear Polyelectrolyte Chains in a Poor Solvent: When Does a Collapsing Polyelectrolyte Collect its Counterions?. Macromolecules, 2008, 41, 9352-9358.	2.2	51
10	Water sorption studies of new pH-responsive N-acryloyl-N′-methyl piperazine and methyl methacrylate hydrogels. European Polymer Journal, 2001, 37, 1473-1478.	2.6	40
11	Synthesis and Properties of New "Stimuli―Responsive Nanocomposite Hydrogels Containing Silver Nanoparticles. Gels, 2015, 1, 117-134.	2.1	32
12	Water-sorption and metal-uptake behavior of pH-responsive poly (N-acryloyl-N?-methylpiperazine) gels. Journal of Applied Polymer Science, 2001, 80, 268-273.	1.3	30
13	Myoglobin and α-Lactalbumin Form Smaller Complexes with the Biosurfactant Rhamnolipid Than with SDS. Biophysical Journal, 2017, 113, 2621-2633.	0.2	29
14	Synthesis and characterization of nanogels of poly(N-isopropylacrylamide) by a combination of light and small-angle X-ray scattering. Physical Chemistry Chemical Physics, 2011, 13, 3108-3114.	1.3	28
15	New Cationic Linear Copolymers and Hydrogels of <i>N</i> -Vinyl Caprolactam and <i>N</i> -Acryloyl- <i>N′</i> -ethyl Piperazine: Synthesis, Reactivity, Influence of External Stimuli on the LCST and Swelling Properties. Industrial & Engineering Chemistry Research, 2012, 51, 13354-13365.	1.8	24
16	Determination of reactivity ratios and swelling characteristics of â€̃stimuli' responsive copolymers of N-acryloyl-N′-ethyl piperazine and MMA. Polymer, 2006, 47, 5025-5034.	1.8	21
17	Structures of PEP–PEO Block Copolymer Micelles: Effects of Changing Solvent and PEO Length and Comparison to a Thermodynamic Model. Macromolecules, 2012, 45, 430-440.	2.2	21

Influence of external stimuli on the network properties of cationic poly(N-acryloyl-N $\hat{a} \in \mathbb{M}$ -propyl) Tj ETQq0 0 0 rgBT [Overlock 10 Tf 50 62] 18 II Tf 50 62

#	Article	IF	CITATIONS
19	Preparation and Luminescence Properties of Neodymium(III) Oxide Nanocrystals Dispersed in Sol-gel Titania/ (γ-glycidoxypropyl)Trimethoxysilane Composite Thin Films. Journal of Materials Research, 2002, 17, 1399-1405.	1.2	18
20	Structure of PEP–PEO block copolymer micelles: exploiting the complementarity of small-angle X-ray scattering and static light scattering. Journal of Applied Crystallography, 2011, 44, 473-482.	1.9	18
21	A new cationic surfactant N,N′-dimethyl-N-acryloyloxyundecyl piperazinium bromide and its pH-sensitive gels by microemulsion polymerisation. Polymer, 2004, 45, 5483-5490.	1.8	17
22	Influence of amino group p <i>K_a</i> on the properties of stimuliâ€responsive piperazineâ€based polymers and hydrogels. Journal of Applied Polymer Science, 2008, 107, 1449-1458.	1.3	17
23	Synthesis, swelling properties, and network structure of new stimuliâ€responsive poly(<i>N</i> â€acryloylâ€ <i>N</i> â€aĉethyl piperazineâ€ <i>coâ€N</i> â€isopropylacrylamide) hydrogels. Journa Polymer Science Part A, 2012, 50, 3363-3372.	l 20.5	17
24	Chemical accumulation and voltammetric determination of traces of nickel(II) at glassy carbon electrodes modified with dimethyl glyoxime containing polymer coatings. Talanta, 1999, 49, 651-659.	2.9	16
25	Biodegradable elastomers based on ABA triblocks: influence of endâ€block crystallinity on elastomeric character. Polymer International, 2012, 61, 43-50.	1.6	16
26	Characterization and degradation of elastomeric fourâ€armed star copolymers based on caprolactone and L â€lactide. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3436-3445.	2.1	15
27	Up-conversion emission in violet from neodymium oxalate and neodymium oxide phosphors obtained by microemulsion technique. Materials Science and Engineering C, 2001, 16, 153-156.	3.8	14
28	Microemulsion Droplets Decorated by Brij700 Block Copolymer:  Phase Behavior and Structural Investigation by SAXS and SANS. Langmuir, 2007, 23, 6544-6553.	1.6	14
29	Phase Behavior and Microstructure of C ₁₂ E ₅ Nonionic Microemulsions with Chlorinated Oils. Langmuir, 2008, 24, 3111-3117.	1.6	14
30	Micro-DSC, rheological and NMR investigations of the gelation of gallic acid and xyloglucan. Soft Matter, 2012, 8, 7258.	1.2	14
31	Network Structure and Congo Red Dye Removal Characteristics of New Temperature-Responsive Hydrogels. Separation Science and Technology, 2015, 50, 64-71.	1.3	14
32	Phase Behavior and Kinetics of Phase Separation of a Nonionic Microemulsion of C ₁₂ E ₅ /Water/1-Chlorotetradecane upon a Temperature Quench. Journal of Physical Chemistry B, 2009, 113, 7138-7146.	1.2	13
33	Effect of nature of chemical crosslinker on swelling and solubility parameter of a new stimuli-responsive cationic poly(N-acryloyl-N′-propyl piperazine) hydrogel. Polymer Bulletin, 2018, 75, 221-238.	1.7	13
34	Preparation and characterization of erbium oxalate and erbium oxide nanoparticles by microemulsion technique. Materials Science and Engineering C, 2001, 16, 51-54.	3.8	12
35	New piperazineâ€based polymerizable monoquaternary cationic surfactants: Synthesis, polymerization, and swelling characteristics of gels. Journal of Polymer Science Part A, 2009, 47, 2059-2072.	2.5	11

36 Solution Properties of Water-Soluble "Smart―Poly(N-acryloyl-Nâ€2-ethyl piperazine-co-methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

Roshan Deen Gr

#	Article	IF	CITATIONS
37	THERMOGELLING COPOLYMERS FOR MEDICAL APPLICATIONS. Journal of Molecular and Engineering Materials, 2013, 01, 1330002.	0.9	11
38	Investigation on the structure of temperature-responsive <i>N</i> -isopropylacrylamide microgels containing a new hydrophobic crosslinker. Cogent Chemistry, 2015, 1, 1012658.	2.5	10
39	Synthesis and Properties of Piperazine Derivatives and Their Quaternary Ammonium Amphiphilic Salts. Journal of Colloid and Interface Science, 1996, 183, 329-338.	5.0	9
40	Preparation and characterization of PbS nanoclusters made by using a powder method on ionomers. Polymer, 2005, 46, 10883-10889.	1.8	9
41	Swelling Behavior and Metal-Ion Uptake Capacity of pH-Responsive Hydrogels of Poly(<i>N</i> -acryloyl- <i>N</i> ′-ethylpiperazine). Journal of Dispersion Science and Technology, 2010, 31, 1673-1678.	1.3	9
42	New stimuli-responsive polyampholyte: Effect of chemical structure and composition on solution properties and swelling mechanism. Polymer, 2016, 104, 91-103.	1.8	9
43	Photoluminescence of erbium oxide nanocrystals/TiO2/γ-glycidoxypropyltrimethoxysilane (GLYMO) composite sol–gel thin films derived at low temperature. Journal of Applied Physics, 2001, 89, 3058-3060.	1.1	8
44	Influence of multiple stimuli on the lower critical solution temperature of new cationic poly(<i>N</i> â€acryloylâ€ <i>N</i> â€2â€ethylpiperazineâ€ <i>coâ€N</i> â€isopropylacrylamide) solutions. Journal Polymer Science, Part B: Polymer Physics, 2013, 51, 1175-1183.	a f.4	8
45	Enhanced transfection of a macromolecular lignin-based DNA complex with low cellular toxicity. Bioscience Reports, 2018, 38, .	1.1	8
46	New functional copolymers of N-acryloyl-N′-methyl piperazine and 2-hydroxyethyl methacrylate: synthesis, determination of reactivity ratios and swelling characteristics of gels. Polymer Bulletin, 2011, 66, 301-313.	1.7	7
47	New pH-responsive linear and crosslinked functional copolymers of N-acryloyl-N′-phenyl piperazine with acrylic acid and hydroxyethyl methacrylate: synthesis, reactivity, and effect of steric hindrance on swelling. Polymer Bulletin, 2012, 69, 827-846.	1.7	7
48	Study of Microemulsion Polymerization Conditions on the Preparation of "Stimuli―Responsive Copolymer Nanogels of Nâ€Acryloylâ€N′â€Methyl Piperazine and Methyl Methacrylate. Journal of Dispersion Science and Technology, 2008, 29, 431-435.	1.3	6
49	Formation and properties of nanoemulsions. , 2016, , 193-226.		6
50	Nucleation of an Oil Phase in a Nonionic Microemulsion-Containing Chlorinated Oil upon Systematic Temperature Quench. Journal of Physical Chemistry B, 2010, 114, 7769-7776.	1.2	5
51	Influence of a New Stiff Crosslinker on the Swelling of Poly(<i>N</i> -isopropyl Acrylamide-co-Sodium) Tj ETQq1 1 (Polymeric Biomaterials, 2013, 62, 517-523.	0.784314 1.8	rgBT /Overla 5
52	Up-conversion luminescence of erbium (III) oxalate nanoparticles/titania/ÿ-glycidoxypropyltrimethoxysilane composite sol-gel thin films. Journal of Electronic Materials, 2001, 30, 7-10.	1.0	4
53	Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench. International Journal of Materials Research, 2006, 97, 285-289.	0.8	1
54	TiO2 Nano-cluster Thin Films by Dense Plasma Focus and Ion Implantation Effect on its Photocatalytic Activity. Journal of Advanced Oxidation Technologies, 2011, 14, .	0.5	0

#	Article	IF	CITATIONS
55	Late-stage coarsening of oil droplets of excess oil in microemulsions following a temperature quench. International Journal of Materials Research, 2022, 97, 285-289.	0.1	0