Jun Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594571/publications.pdf

Version: 2024-02-01

103	4,263 citations	39	61
papers		h-index	g-index
103	103	103	2891 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Corrosion and tribocorrosion resistance of MAO-based composite coating on AZ31 magnesium alloy. Journal of Magnesium and Alloys, 2022, 10, 3406-3417.	5.5	32
2	Evolution in microstructure features and properties of Mo-containing Fe-Cr-Ni-B-Si composite coatings by laser cladding. Materials Characterization, 2022, 188, 111926.	1.9	7
3	Fluoride-dominated coating on Mg alloys fabricated by plasma electrolytic process in ambient non-aqueous electrolyte. Surface Engineering, 2021, 37, 360-364.	1.1	11
4	Robust and non-fluorinated superhydrophobic meshes with controllable pore size for high-efficiency water-in-oil emulsion separation. Separation Science and Technology, 2021, 56, 1699-1709.	1.3	3
5	Effect of V and Cr transition layers on microstructure and mechanical properties of Ni-based coating on titanium alloy fabricated by laser cladding. Surface and Coatings Technology, 2021, 405, 126734.	2.2	18
6	A chemical-free sealing method for Micro-arc oxidation coatings on AZ31 Mg alloy. Surface and Coatings Technology, 2021, 406, 126655.	2.2	39
7	Ni-Al nanocomposite coating electrodeposited from deep eutectic solvent. Surface and Coatings Technology, 2021, 405, 126587.	2.2	9
8	Preparation and Characterization of Hydroxyapatite Coating on AZ31 Magnesium Alloy Induced by Carboxymethyl Cellulose-Dopamine. Materials, 2021, 14, 1849.	1.3	8
9	Preparation and Characterization of a Sol–Gel AHEC Pore-Sealing Film Prepared on Micro Arc Oxidized AZ31 Magnesium Alloy. Metals, 2021, 11, 784.	1.0	2
10	Wear and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on 6061 Al Alloy in Electrolytes with Aluminate and Phosphate. Materials, 2021, 14, 4037.	1.3	11
11	Effects of NiCr intermediate layer on microstructure and tribological property of laser cladding Cr3C2 reinforced Ni6OA-Ag composite coating on copper alloy. Optics and Laser Technology, 2021, 142, 106963.	2.2	23
12	Preparation and characterization of laser cladded FeCrMoBSi amorphous composite coatings. Surface and Coatings Technology, 2021, 423, 127520.	2.2	13
13	Influence of MoSi2 on the microstructure and elevated-temperature wear properties of Inconel 718 coating fabricated by laser cladding. Surface and Coatings Technology, 2021, 424, 127665.	2.2	21
14	Dual self-healing composite coating on magnesium alloys for corrosion protection. Chemical Engineering Journal, 2021, 424, 130551.	6.6	64
15	Plasma electrolytic fluorination on Al alloys: Coating growth and plasma discharge behavior. Ceramics International, 2021, 47, 29758-29770.	2.3	6
16	Plasma electrolytic fluorination on Mg alloys: coating growth and plasma discharge behaviour. Surface Engineering, 2021, 37, 1373-1387.	1.1	1
17	Template-free electrodeposition of ultra-high adhesive superhydrophobic Zn/Zn stearate coating with ordered hierarchical structure from deep eutectic solvent. Surface and Coatings Technology, 2020, 403, 126267.	2.2	18
18	Microstructure evolution and wear resistance of in-situ nanoparticles reinforcing Fe-based amorphous composite coatings. Surfaces and Interfaces, 2020, 21, 100652.	1.5	12

#	Article	IF	CITATIONS
19	Y-doped TiO2 coating with superior bioactivity and antibacterial property prepared via plasma electrolytic oxidation. Materials and Design, 2020, 192, 108758.	3.3	35
20	Influence of Cu2+ Ions on the Corrosion Resistance of AZ31 Magnesium Alloy with Microarc Oxidation. Materials, 2020, 13, 2647.	1.3	7
21	Facile preparation of petaliform-like superhydrophobic meshes via moisture etching for oil-water separation. Surface and Coatings Technology, 2020, 399, 126124.	2.2	21
22	Ni–Ti Nanocomposite Coatings Electro-Codeposited from Deep Eutectic Solvent Containing Ti Nanoparticles. Journal of the Electrochemical Society, 2020, 167, 042502.	1.3	8
23	New Method for the Corrosion Resistance of AZ31 Mg Alloy with a Porous Micro-Arc Oxidation Membrane as an Ionic Corrosion Inhibitor Container. Langmuir, 2019, 35, 1134-1145.	1.6	62
24	Effect of severe shot peening on corrosion behavior of AZ31 and AZ91 magnesium alloys. Journal of Alloys and Compounds, 2019, 770, 500-506.	2.8	78
25	Galvanic deposition of Ni on Al alloy from a choline chloride based ionic liquid for electroless Ni–P pretreatment. Materials Research Express, 2019, 6, 1165a6.	0.8	3
26	The effect of ceramic friction pairs on the tribocorrosion behavior of AISI 304 stainless steel in seawater. Industrial Lubrication and Tribology, 2019, 71, 779-786.	0.6	9
27	Electrodeposition of composition controllable Zn Ni coating from water modified deep eutectic solvent. Surface and Coatings Technology, 2019, 366, 138-145.	2.2	28
28	Preparation and Characterization of Fluoride-Incorporated Plasma Electrolytic Oxidation Coatings on the AZ31 Magnesium Alloy. Coatings, 2019, 9, 826.	1.2	11
29	Effects of beta phase on the growth behavior of plasma electrolytic oxidation coating formed on magnesium alloys. Journal of Alloys and Compounds, 2019, 784, 414-421.	2.8	24
30	Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy. Surface and Coatings Technology, 2019, 357, 515-525.	2.2	51
31	Wear and corrosion resistance of Co–P coatings: the effects of current modes. RSC Advances, 2018, 8, 895-903.	1.7	14
32	A comparative study of characterisation of plasma electrolytic oxidation coatings on carbon steel prepared from aluminate and silicate electrolytes. Surface Engineering, 2018, 34, 54-62.	1.1	13
33	Superhydrophilic nickel-coated meshes with controllable pore size prepared by electrodeposition from deep eutectic solvent for efficient oil/water separation. Separation and Purification Technology, 2018, 192, 21-29.	3.9	39
34	Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind. Nano Research, 2018, 11, 1873-1882.	5.8	73
35	Simultaneous electropolishing and electrodeposition of aluminum in ionic liquid under ambient conditions. Applied Surface Science, 2018, 434, 918-921.	3.1	23
36	Electropolishing of Al and Al alloys in AlCl 3 /trimethylamine hydrochloride ionic liquid. Surface and Coatings Technology, 2018, 335, 72-79.	2.2	17

#	Article	IF	Citations
37	Comparison of Corrosion Resistance and Cytocompatibility of MgO and ZrO2 Coatings on AZ31 Magnesium Alloy Formed via Plasma Electrolytic Oxidation. Coatings, 2018, 8, 441.	1.2	15
38	Influence of Silicate Concentration in Electrolyte on the Growth and Performance of Plasma Electrolytic Oxidation Coatings Prepared on Low Carbon Steel. Journal of Materials Engineering and Performance, 2018, 27, 2345-2353.	1.2	6
39	In situ growth of single-crystal TiO2 nanorod arrays on Ti substrate: Controllable synthesis and photoelectro-chemical water splitting. Nano Research, 2017, 10, 1021-1032.	5.8	20
40	Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes. Surface and Coatings Technology, 2017, 316, 162-170.	2.2	105
41	Enhancement of photoelectrochemical and photocathodic protection properties of TiO 2 nanotube arrays by simple surface UV treatment. Applied Surface Science, 2017, 394, 440-445.	3.1	59
42	Characterization of plasma electrolytic oxidation coating on low carbon steel prepared from silicate electrolyte with Al nanoparticles. Ceramics International, 2017, 43, 16851-16858.	2.3	16
43	Characterization and properties of plasma electrolytic oxidation coating on low carbon steel fabricated from aluminate electrolyte. Vacuum, 2017, 144, 207-216.	1.6	36
44	A protocol for fast electroless Ni-P on Al alloy at medium-low temperature accelerated by hierarchically structured Cu immersion layer. Surface and Coatings Technology, 2017, 309, 67-74.	2.2	14
45	RGDC Peptide-Induced Biomimetic Calcium Phosphate Coating Formed on AZ31 Magnesium Alloy. Materials, 2017, 10, 358.	1.3	16
46	Preparation and Characterization of Aminated Hydroxyethyl Cellulose-Induced Biomimetic Hydroxyapatite Coatings on the AZ31 Magnesium Alloy. Metals, 2017, 7, 214.	1.0	16
47	Preparation of Hydroxyapatite/Tannic Acid Coating to Enhance the Corrosion Resistance and Cytocompatibility of AZ31 Magnesium Alloys. Coatings, 2017, 7, 105.	1.2	37
48	Characterization and corrosion behavior of plasma electrolytic oxidation coated AZ91-T6 magnesium alloy. Surface and Coatings Technology, 2016, 304, 179-187.	2.2	41
49	A novel multifunctional PTFE/PEO composite coating prepared by one-step method. Surface and Coatings Technology, 2016, 299, 90-95.	2.2	37
50	Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chemical Science, 2016, 7, 6477-6483.	3.7	94
51	Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light. Materials Letters, 2016, 185, 81-84.	1.3	34
52	Electrodeposition of homogenous Ni/SiO2 nanocomposite coatings from deep eutectic solvent with in-situ synthesized SiO2 nanoparticles. Electrochimica Acta, 2016, 222, 1272-1280.	2.6	36
53	Corrosion behaviour of plasma electrolytic oxidation coated AZ91 Mg alloy: influence of laser surface melting pretreatment. RSC Advances, 2016, 6, 70343-70351.	1.7	8
54	Proton irradiation effects on the structural and tribological properties of polytetrafluoroethylene. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1448-1455.	2.0	4

#	Article	IF	Citations
55	Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation. Applied Surface Science, 2016, 382, 47-55.	3.1	39
56	Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribology International, 2016, 97, 97-107.	3.0	54
57	Microstructure and corrosion behaviour of laser surface melting treated WE43 magnesium alloy. RSC Advances, 2016, 6, 30642-30651.	1.7	18
58	Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance. Applied Surface Science, 2016, 367, 449-458.	3.1	57
59	Electrochemical deposition of Mg(OH)2/GO composite films for corrosion protection of magnesium alloys. Journal of Magnesium and Alloys, 2015, 3, 231-236.	5.5	26
60	Electrodeposition and characterization of Ni–SiC composite coatings from deep eutectic solvent. RSC Advances, 2015, 5, 44933-44942.	1.7	37
61	Improvement of corrosion protective performance of organic coating on low carbon steel by PEO pretreatment. Progress in Organic Coatings, 2015, 89, 260-266.	1.9	38
62	Effects of N-Doped TiO2Thin Films on Corrosion Resistance of Stainless Steel Orthodontic Brackets in Artificial Saliva. Corrosion, 2015, 71, 784-794.	0.5	6
63	Enhanced corrosion performance of Zn coating by incorporating graphene oxide electrodeposited from deep eutectic solvent. RSC Advances, 2015, 5, 60698-60707.	1.7	53
64	Effect of laser surface melting on microstructure and corrosion characteristics of AM60B magnesium alloy. Applied Surface Science, 2015, 343, 133-140.	3.1	72
65	Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy. Surface and Coatings Technology, 2015, 281, 82-88.	2.2	77
66	Growth Kinetics of Copper Replacement Deposition on Al and Al-Si from a Deep Eutectic Solvent. Journal of the Electrochemical Society, 2015, 162, D515-D519.	1.3	9
67	Corrosion and tribocorrosion performance of multilayer diamond-like carbon film in NaCl solution. RSC Advances, 2015, 5, 104829-104840.	1.7	63
68	Copper Galvanic Replacement on Aluminum from a Choline Chloride Based Ionic Liquid: Effect of Thiourea. Journal of the Electrochemical Society, 2014, 161, D534-D539.	1.3	13
69	Corrosion Mechanism of Plasma Electrolytic Oxidation Coated Magnesium Alloy with Laser Surface Melting Pretreatment. Journal of the Electrochemical Society, 2014, 161, C20-C24.	1.3	18
70	Electrodeposition of zinc-cobalt alloys from choline chlorideâ€"urea ionic liquid. Electrochimica Acta, 2014, 115, 499-503.	2.6	51
71	Facile fabrication of a robust super-hydrophobic surface on magnesium alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 118-122.	2.3	48
72	Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy. Applied Surface Science, 2014, 313, 834-840.	3.1	83

#	Article	IF	Citations
73	One-step electrochemical fabrication of bilayered MgO/polymer coating on magnesium alloy. Frontiers of Materials Science, 2014, 8, 307-312.	1.1	6
74	Preparation of superhydrophobic zinc coating for corrosion protection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 454, 113-118.	2.3	61
75	Effects of cathodic voltages on structure and wear resistance of plasma electrolytic oxidation coatings formed on aluminium alloy. Applied Surface Science, 2014, 297, 176-181.	3.1	83
76	Thermal control coatings on magnesium alloys prepared by plasma electrolytic oxidation. Applied Surface Science, 2013, 280, 151-155.	3.1	63
77	Cavitation erosion resistance of microarc oxidation coating on aluminium alloy. Applied Surface Science, 2013, 280, 287-296.	3.1	37
78	One-step preparation of TiO2/MoS2 composite coating on Ti6Al4V alloy by plasma electrolytic oxidation and its tribological properties. Surface and Coatings Technology, 2013, 214, 124-130.	2.2	115
79	Electrodeposition of high Co content nanocrystalline Zn–Co alloys from a choline chloride-based ionic liquid. Materials Chemistry and Physics, 2013, 142, 539-544.	2.0	14
80	Role of sintering and clay particle additions on coating formation during PEO processing of AM50 magnesium alloy. Surface and Coatings Technology, 2012, 213, 48-58.	2.2	57
81	Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy. Applied Surface Science, 2012, 258, 4360-4364.	3.1	18
82	Preparation and tribological properties of self-lubricating TiO2/graphite composite coating on Ti6Al4V alloy. Applied Surface Science, 2012, 258, 8570-8576.	3.1	87
83	Microstructure and corrosion behavior of plasma electrolytic oxidation coated magnesium alloy pre-treated by laser surface melting. Surface and Coatings Technology, 2012, 206, 3109-3115.	2.2	41
84	Optical properties of N and transition metal R (R=V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) codoped anatase TiO2. Physica B: Condensed Matter, 2012, 407, 2709-2715.	1.3	46
85	Environmentally assisted cracking behaviour of plasma electrolytic oxidation coated AZ31 magnesium alloy. Corrosion Engineering Science and Technology, 2011, 46, 706-711.	0.7	15
86	Dry sliding wear behaviour of magnesium oxide and zirconium oxide plasma electrolytic oxidation coated magnesium alloy. Applied Surface Science, 2010, 256, 3265-3273.	3.1	53
87	Effect of pulse frequency on the microstructure, phase composition and corrosion performance of a phosphate-based plasma electrolytic oxidation coated AM50 magnesium alloy. Applied Surface Science, 2010, 256, 3928-3935.	3.1	116
88	Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy. Applied Surface Science, 2010, 256, 4017-4022.	3.1	85
89	Development of decorative and corrosion resistant plasma electrolytic oxidation coatings on AM50 magnesium alloy. Surface Engineering, 2010, 26, 367-370.	1.1	31
90	Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy. Applied Surface Science, 2009, 255, 4212-4218.	3.1	199

#	Article	IF	CITATIONS
91	Tribological behavior of plasma electrolytic oxidation coating on magnesium alloy with oil lubrication at elevated temperatures. Journal of Alloys and Compounds, 2009, 481, 903-909.	2.8	46
92	Fabrication of Superhydrophobic Surface on Magnesium Alloy. Chemistry Letters, 2007, 36, 416-417.	0.7	29
93	Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte. Transactions of Nonferrous Metals Society of China, 2007, 17, 244-249.	1.7	32
94	A Novel Approach to the Robust Ti6Al4V-Based Superhydrophobic Surface with Crater-like Structure. Advanced Engineering Materials, 2007, 9, 316-321.	1.6	42
95	Preparation and characterization of oxide films containing crystalline TiO2 on magnesium alloy by plasma electrolytic oxidation. Electrochimica Acta, 2007, 52, 4836-4840.	2.6	127
96	Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 164-169.	2.6	58
97	Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Applied Surface Science, 2007, 253, 4490-4496.	3.1	175
98	Improvement of corrosion properties of microarc oxidation coating on magnesium alloy by optimizing current density parameters. Applied Surface Science, 2007, 253, 6939-6945.	3.1	105
99	Effects of NaAlO2 on structure and corrosion resistance of microarc oxidation coatings formed on AM60B magnesium alloy in phosphate–KOH electrolyte. Surface and Coatings Technology, 2005, 199, 121-126.	2.2	133
100	Effect of potassium fluoride in electrolytic solution on the structure and properties of microarc oxidation coatings on magnesium alloy. Applied Surface Science, 2005, 252, 345-351.	3.1	182
101	Calculation of the multimode Franck–Condon factors based on the coherent state method. Molecular Physics, 2005, 103, 3337-3342.	0.8	18
102	Plasma Electrolytic Oxidation Coatings on Lightweight Metals. , 0, , .		19
103	Preparation and Tribological Properties of Graphite-Containing Plasma Electrolytic Oxidation Coatings on Al Alloy. Advanced Materials Research, 0, 1081, 183-186.	0.3	O