Ke Si

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594531/publications.pdf

Version: 2024-02-01

		471509	395702
50	1,153	17	33
papers	citations	h-index	g-index
50	50	50	1034
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation. Nature Photonics, 2012, 6, 657-661.	31.4	238
2	Deep learning enables automated scoring of liver fibrosis stages. Scientific Reports, 2018, 8, 16016.	3.3	81
3	Ultrafast optical clearing method for three-dimensional imaging with cellular resolution. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11480-11489.	7.1	77
4	Complex wavefront corrections for deep tissue focusing using low coherence backscattered light. Optics Express, 2012, 20, 16532.	3.4	63
5	Breaking the spatial resolution barrier via iterative sound-light interaction in deep tissue microscopy. Scientific Reports, 2012, 2, 748.	3 . 3	63
6	Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Optics Express, 2019, 27, 33504.	3.4	55
7	Fully end-to-end deep-learning-based diagnosis of pancreatic tumors. Theranostics, 2021, 11, 1982-1990.	10.0	54
8	Machine learning guided rapid focusing with sensor-less aberration corrections. Optics Express, 2018, 26, 30162.	3.4	50
9	The divided aperture technique for microscopy through scattering media. Optics Express, 2008, 16, 17031.	3.4	37
10	Deep learning assisted Shack–Hartmann wavefront sensor for direct wavefront detection. Optics Letters, 2020, 45, 3741.	3.3	33
11	Improved spatial resolution in fluorescence focal modulation microscopy. Optics Letters, 2009, 34, 3508.	3. 3	31
12	Optimization of axial resolution in a confocal microscope with D-shaped apertures. Applied Optics, 2009, 48, 3998.	2.1	24
13	Focal modulation microscopy with annular apertures: A numerical study. Journal of Biophotonics, 2010, 3, 476-484.	2.3	24
14	Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo. Biomedical Optics Express, 2019, 10, 3447.	2.9	23
15	Organizational principles of amygdalar input-output neuronal circuits. Molecular Psychiatry, 2021, 26, 7118-7129.	7.9	21
16	Machine learning based adaptive optics for doughnut-shaped beam. Optics Express, 2019, 27, 16871.	3.4	20
17	Three-dimensional coherent transfer function for a confocal microscope with two D-shaped pupils. Applied Optics, 2009, 48, 810.	2.1	19
18	Parallel wavefront measurements in ultrasound pulse guided digital phase conjugation. Optics Express, 2012, 20, 24827.	3.4	16

#	Article	IF	CITATIONS
19	Optical Brain Imaging: A Powerful Tool for Neuroscience. Neuroscience Bulletin, 2017, 33, 95-102.	2.9	16
20	Improvements of axial resolution in confocal microscopy with fan-shaped apertures. Applied Optics, 2015, 54, 1354.	1.8	15
21	Streak artifact suppression in photoacoustic computed tomography using adaptive back projection. Biomedical Optics Express, 2019, 10, 4803.	2.9	13
22	Two-photon focal modulation microscopy in turbid media. Applied Physics Letters, 2011, 99, .	3.3	12
23	Twoâ€photon focal modulation microscopy for highâ€resolution imaging in deep tissue. Journal of Biophotonics, 2019, 12, e201800247.	2.3	12
24	Deep Learning Assisted Zonal Adaptive Aberration Correction. Frontiers in Physics, 2021, 8, .	2.1	11
25	Polarization effects in 4Pi microscopy. Micron, 2011, 42, 353-359.	2.2	10
26	Enhanced background rejection in thick tissue using focal modulation microscopy with quadrant apertures. Optics Communications, 2011, 284, 1475-1480.	2.1	10
27	Image enhancement for fluorescence microscopy based on deep learning with prior knowledge of aberration. Optics Letters, 2021, 46, 2055.	3.3	10
28	Wavefront reconstruction based on deep transfer learning for microscopy. Optics Express, 2020, 28, 20738.	3.4	10
29	Genetically encoded sensors enable micro- and nano-scopic decoding of transmission in healthy and diseased brains. Molecular Psychiatry, 2021, 26, 443-455.	7.9	9
30	Improvements in confocal microscopy imaging using serrated divided apertures. Optics Communications, 2009, 282, 3846-3849.	2.1	8
31	Model for light scattering in biological tissue and cells based on random rough nonspherical particles. Applied Optics, 2009, 48, 1153.	2.1	8
32	Edge enhancement for in-phase focal modulation microscope. Applied Optics, 2009, 48, 6290.	2.1	8
33	Divided-aperture technique for fluorescence confocal microscopy through scattering media. Applied Optics, 2010, 49, 752.	2.1	8
34	Numerical studies of focal modulation microscopy in high-NA system. Optics Express, 2016, 24, 19138.	3.4	7
35	Large field of view correction by using conjugate adaptive optics with multiple guide stars. Journal of Biophotonics, 2019, 12, e201800225.	2.3	7
36	Simplifying the detection of optical distortions by machine learning. Journal of Innovative Optical Health Sciences, 2020, 13, .	1.0	7

#	Article	IF	CITATIONS
37	Stripe-shaped apertures in confocal microscopy. Applied Optics, 2016, 55, 7613.	2.1	6
38	Enlarged field of view based on Schwartz modulation for light sheet fluorescence microscopy in deep tissue. Optics Letters, 2020, 45, 4851.	3.3	6
39	Super-resolution microscopy and its applications in neuroscience. Journal of Innovative Optical Health Sciences, 2017, 10, 1730001.	1.0	5
40	Multidither coherent optical adaptive technique for deep tissue two-photon microscopy. Journal of Innovative Optical Health Sciences, 2019, 12, .	1.0	5
41	Deep learning based wavefront sensor for complex wavefront detection in adaptive optical microscopes. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 1277-1288.	2.6	5
42	Aberration corrections of doughnut beam by adaptive optics in the turbid medium. Journal of Biophotonics, 2019, 12, e201900125.	2.3	3
43	Reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing. Journal of Biophotonics, 2020, 13, e201900245.	2.3	3
44	Adaptive optics for structured illumination microscopy based on deep learning. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 622-631.	1.5	3
45	Optimization for imaging through scattering media for confocal microscopes with divided elliptical apertures. Journal of Biophotonics, 2018, 11 , e201700293.	2.3	2
46	Improvements with divided cosine-shaped apertures in confocal microscopy. Optics Communications, 2019, 442, 71-76.	2.1	2
47	Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection: erratum. Optics Express, 2020, 28, 32132.	3.4	2
48	Multiple guide stars optimization in conjugate adaptive optics for deep tissue imaging. Optics Communications, 2020, 459, 124891.	2.1	1
49	Opto-ultrasound imaging in vivo in deep tissue. Journal of Physics: Conference Series, 2016, 679, 012058.	0.4	0
50	Three-Dimensional Virtual Optical Clearing With Cycle-Consistent Generative Adversarial Network. Frontiers in Physics, 0, 10 , .	2.1	0