
Hua Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594490/publications.pdf Version: 2024-02-01

Нил Ілліс

#	Article	IF	CITATIONS
1	Development of T Cells Redirected to Glypican-3 for the Treatment of Hepatocellular Carcinoma. Clinical Cancer Research, 2014, 20, 6418-6428.	7.0	233
2	Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clinical Cancer Research, 2020, 26, 3979-3989.	7.0	184
3	Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. Journal of the National Cancer Institute, 2019, 111, 409-418.	6.3	129
4	Disruption of PD-1 Enhanced the Anti-tumor Activity of Chimeric Antigen Receptor T Cells Against Hepatocellular Carcinoma. Frontiers in Pharmacology, 2018, 9, 1118.	3.5	126
5	Development of GPC3-Specific Chimeric Antigen Receptor-Engineered Natural Killer Cells for the Treatment of Hepatocellular Carcinoma. Molecular Therapy, 2018, 26, 366-378.	8.2	124
6	Combined Antitumor Effects of Sorafenib and GPC3-CAR T Cells in Mouse Models of Hepatocellular Carcinoma. Molecular Therapy, 2019, 27, 1483-1494.	8.2	100
7	Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3–Targeted Chimeric Antigen Receptor–Engineered T Cells in Hepatocellular Carcinoma. Journal of Immunology, 2019, 203, 198-207.	0.8	95
8	Development of T cells carrying two complementary chimeric antigen receptors against glypican-3 and asialoglycoprotein receptor 1 for the treatment of hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2017, 66, 475-489.	4.2	80
9	Coexpression of IL7 and CCL21 Increases Efficacy of CAR-T Cells in Solid Tumors without Requiring Preconditioned Lymphodepletion. Clinical Cancer Research, 2020, 26, 5494-5505.	7.0	79
10	An IL-4/21 Inverted Cytokine Receptor Improving CAR-T Cell Potency in Immunosuppressive Solid-Tumor Microenvironment. Frontiers in Immunology, 2019, 10, 1691.	4.8	70
11	EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Molecular Cancer, 2017, 16, 127.	19.2	63
12	A phase I study of anti-GPC3 chimeric antigen receptor modified T cells (GPC3 CAR-T) in Chinese patients with refractory or relapsed GPC3+ hepatocellular carcinoma (r/r GPC3+ HCC) Journal of Clinical Oncology, 2017, 35, 3049-3049.	1.6	61
13	EGFR regulates iron homeostasis to promote cancer growth through redistribution of transferrin receptor 1. Cancer Letters, 2016, 381, 331-340.	7.2	58
14	Combined Adjuvant of Poly I:C Improves Antitumor Effects of CAR-T Cells. Frontiers in Oncology, 2019, 9, 241.	2.8	54
15	Olaparib Suppresses MDSC Recruitment via SDF1α/CXCR4 Axis to Improve the Anti-tumor Efficacy of CAR-T Cells on Breast Cancer in Mice. Molecular Therapy, 2021, 29, 60-74.	8.2	51
16	Increased antitumor activities of glypican-3-specific chimeric antigen receptor-modified T cells by coexpression of a soluble PD1–CH3 fusion protein. Cancer Immunology, Immunotherapy, 2018, 67, 1621-1634.	4.2	46
17	Growth Suppression of Human Hepatocellular Carcinoma Xenografts by a Monoclonal Antibody CH12 Directed to Epidermal Growth Factor Receptor Variant III. Journal of Biological Chemistry, 2011, 286, 5913-5920.	3.4	41
18	Treatment of hepatocellular carcinoma with a GPC3-targeted bispecific T cell engager. Oncotarget, 2017, 8, 52866-52876.	1.8	38

Hua Jiang

#	Article	IF	CITATIONS
19	Selective Targeting of Glioblastoma with EGFRvIII/EGFR Bitargeted Chimeric Antigen Receptor T Cell. Cancer Immunology Research, 2018, 6, 1314-1326.	3.4	37
20	Antitumor efficacy of chimeric antigen receptor T cells against EGFRvIII-expressing glioblastoma in C57BL/6 mice. Biomedicine and Pharmacotherapy, 2019, 113, 108734.	5.6	34
21	Adoptive immunotherapy using T lymphocytes redirected to glypican-3 for the treatment of lung squamous cell carcinoma. Oncotarget, 2016, 7, 2496-2507.	1.8	31
22	EGFRvIII Mediates Hepatocellular Carcinoma Cell Invasion by Promoting S100 Calcium Binding Protein A11 Expression. PLoS ONE, 2013, 8, e83332.	2.5	26
23	Target-Dependent Expression of IL12 by synNotch Receptor-Engineered NK92 Cells Increases the Antitumor Activities of CAR-T Cells. Frontiers in Oncology, 2019, 9, 1448.	2.8	25
24	Efficient growth suppression in pancreatic cancer PDX model by fully human anti-mesothelin CAR-T cells. Protein and Cell, 2017, 8, 926-931.	11.0	22
25	Exploring subclass-specific therapeutic agents for hepatocellular carcinoma by informatics-guided drug screen. Briefings in Bioinformatics, 2021, 22, .	6.5	16
26	The monoclonal antibody CH12 augments 5-fluorouracil-induced growth suppression of hepatocellular carcinoma xenografts expressing epidermal growth factor receptor variant III. Cancer Letters, 2014, 342, 113-120.	7.2	15
27	Combination of an anti-EGFRvIII antibody CH12 with Rapamycin synergistically inhibits the growth of EGFRvIII+PTENâ°' glioblastoma <i>in vivo</i> . Oncotarget, 2016, 7, 24752-24765.	1.8	13
28	The Effect of and Mechanism Underlying Autophagy in Hepatocellular Carcinoma Induced by CH12, a Monoclonal Antibody Directed Against Epidermal Growth Factor Receptor Variant III. Cellular Physiology and Biochemistry, 2018, 46, 226-237.	1.6	10
29	A Fusion Receptor as a Safety Switch, Detection, and Purification Biomarker for Adoptive Transferred T Cells. Molecular Therapy, 2017, 25, 2270-2279.	8.2	9
30	Current Challenges and Strategies for Chimeric Antigen Receptor-T-Cell Therapy for Solid Tumors. Critical Reviews in Immunology, 2021, 41, 1-12.	0.5	6
31	Synergistic antitumor efficacy against the EGFRvIII+HER2+ breast cancers by combining trastuzumab with anti-EGFRvIII antibody CH12. Oncotarget, 2015, 6, 38840-38853.	1.8	6
32	Species-Specific Involvement of Integrin αIIbβ3 in a Monoclonal Antibody CH12 Triggers Off-Target Thrombocytopenia in Cynomolgus Monkeys. Molecular Therapy, 2018, 26, 1457-1470.	8.2	4
33	Chimeric anti-GPC3 sFv-CD3ε receptor-modified T cells with IL7 co-expression for the treatment of solid tumors. Molecular Therapy - Oncolytics, 2022, 25, 160-173.	4.4	4
34	Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12. Frontiers of Medicine, 2019, 13, 83-93.	3.4	2
35	Weak binding to E3 ubiquitin ligase câ€Cbl increases EGFRvA protein stability. FEBS Letters, 2016, 590, 1345-1353.	2.8	1
36	Differential Expression of VEGF and Its Receptors in the Primary Cells of Various Risk Classified Acute Lymphoblastic Leukemia Patients Blood, 2004, 104, 4446-4446.	1.4	0