Mohammed T Hayajneh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594426/publications.pdf

Version: 2024-02-01

471061 360668 1,370 50 17 35 citations h-index g-index papers 52 52 52 1163 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physical and Mechanical Inherent Characteristic Investigations of Various Jordanian Natural Fiber Species to Reveal Their Potential for Green Biomaterials. Journal of Natural Fibers, 2022, 19, 7199-7212.	1.7	25
2	Mechanical performance, thermal stability and morphological analysis of date palm fiber reinforced polypropylene composites toward functional bio-products. Cellulose, 2022, 29, 3293-3309.	2.4	48
3	Stress failure interface of cellulosic composite beam for more reliable industrial design. International Journal on Interactive Design and Manufacturing, 2022, 16, 1727-1738.	1.3	11
4	Revealing the intrinsic dielectric properties of mediterranean green fiber composites for sustainable functional products. Journal of Industrial Textiles, 2022, 51, 7732S-7754S.	1.1	16
5	Hybrid material performance assessment for rocket propulsion. Journal of the Mechanical Behavior of Materials, 2022, 31, 160-169.	0.7	3
6	A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. International Journal of Sustainable Engineering, 2021, 14, 1043-1048.	1.9	45
7	Hybrid green organic/inorganic filler polypropylene composites: Morphological study and mechanical performance investigations. E-Polymers, 2021, 21, 710-721.	1.3	25
8	Tribological and mechanical fracture performance of Mediterranean lignocellulosic fiber reinforced polypropylene composites. Polymer Composites, 2021, 42, 5501-5511.	2.3	26
9	Mechanical Properties and Corrosion Behavior of Stir Casted Composites of ZA-27 Alloy Reinforced with Al2O3 Nanoparticles. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 974-983.	0.3	2
10	Investigation of mechanical and tribological properties of hybrid green eggshells and graphite-reinforced aluminum composites. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	19
11	Synthesis and characterization of ZA-27/SiC nanocomposites and study of its anticorrosion performance in a 3.5% NaCl medium. Anti-Corrosion Methods and Materials, 2020, 67, 321-329.	0.6	6
12	Applying Taguchi method to study the wear behaviour of ZA-27 alloy-based composites reinforced with SiC nanoparticles. International Journal of Cast Metals Research, 2019, 32, 229-241.	0.5	12
13	Effects of Waste Eggshells addition on Microstructures, Mechanical and Tribological Properties of Green Metal Matrix Composite. Science and Engineering of Composite Materials, 2019, 26, 423-434.	0.6	11
14	Corrosion evaluation of nanocomposite gelatin-forsterite coating applied on AISI 316 L stainless steel. Materials Research Express, 2019, 6, 116431.	0.8	4
15	Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. Journal of Cleaner Production, 2019, 241, 118256.	4.6	58
16	Dielectric relaxation of mediterranean lignocellulosic fibers for sustainable functional biomaterials. Materials Chemistry and Physics, 2019, 229, 174-182.	2.0	40
17	The corrosion behavior of AISI 304 stainless steel spin coated with ZrO ₂ -gelatin nanocomposites. Materials Research Express, 2019, 6, 0965c4.	0.8	5
18	Corrosion Resistance of TiO2-ZrO2 Nanocomposite Thin Films Spin Coated on AISI 304 Stainless Steel in 3.5 wt. % NaCl Solution. Materials Research, 2019, 22, .	0.6	13

#	Article	IF	CITATIONS
19	Enhancement the Corrosion Resistance of AISI 304 Stainless Steel by Nanocomposite Gelatin-Titanium Dioxide Coatings. Manufacturing Technology, 2019, 19, 759-766.	0.2	6
20	Corrosion investigation of zincâ^aluminum alloy matrix (ZA-27) reinforced with alumina (Al ₂ O ₃) and fly ash. Particulate Science and Technology, 2017, 35, 439-447.	1.1	19
21	Prediction and controlling of roundness during the BTA deep hole drilling process: Experimental investigations and fuzzy modeling. Materialpruefung/Materials Testing, 2017, 59, 284-289.	0.8	3
22	Tribological investigation of Zamak alloys reinforced with alumina (Al ₂ O ₃) and fly ash. Particulate Science and Technology, 2016, 34, 317-323.	1.1	11
23	Effects of machining parameters and reinforcement content on thrust force during drilling of hybrid composites. Materialpruefung/Materials Testing, 2016, 58, 280-284.	0.8	4
24	Modelling decision making under risk and uncertainty by novel utility measures. International Journal of Applied Decision Sciences, 2015, 8, 179.	0.2	5
25	Dynamic modelling and analysis of whirling motion in BTA deep hole boring process. International Journal of Machining and Machinability of Materials, 2011, 10, 48.	0.1	6
26	A fuzzy multi-criteria decision making model for supplier selection. Expert Systems With Applications, 2011, 38, 8384-8391.	4.4	291
27	Monitoring defects of ceramic tiles using fuzzy subtractive clustering-based system identification method. Soft Computing, 2010, 14, 615-626.	2.1	6
28	Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network. Journal of Materials Processing Technology, 2009, 209, 894-899.	3.1	137
29	An investigation of bell mouthing in precision hole machining with self-piloting tools. International Journal of Advanced Manufacturing Technology, 2009, 43, 22-32.	1.5	8
30	Wear behavior of Al–Mg–Cu–based composites containing SiC particles. Tribology International, 2009, 42, 1230-1238.	3.0	129
31	Prediction of tribological behavior of aluminum–copper based composite using artificial neural network. Journal of Alloys and Compounds, 2009, 470, 584-588.	2.8	74
32	Artificial neural network modeling of the drilling process of self-lubricated aluminum/alumina/graphite hybrid composites synthesized by powder metallurgy technique. Journal of Alloys and Compounds, 2009, 478, 559-565.	2.8	60
33	Development of a CAD/CAM system for simulating closed forging process using finiteâ€element method. Engineering Computations, 2009, 26, 302-312.	0.7	2
34	Wear behavior of Al–Cu and Al–Cu/SiC components produced by powder metallurgy. Journal of Materials Science, 2008, 43, 5368-5375.	1.7	50
35	Reductions of pendulations of overhead cranes under the effect of air resistance by a cable manipulation manner. , 2008 , , .		3
36	Modelling the machinability of self-lubricated aluminium/alumina/graphite hybrid composites using a fuzzy subtractive clustering-based system identification method. International Journal of Machining and Machinability of Materials, 2008, 3, 252.	0.1	5

#	Article	IF	Citations
37	Fuzzy logic controller for overhead cranes. Engineering Computations, 2006, 23, 84-98.	0.7	20
38	FUZZY CLUSTERING MODELLING FOR SURFACE FINISH PREDICTION IN FINE TURNING PROCESS. Machining Science and Technology, 2005, 9, 437-451.	1.4	5
39	Series Resistance Compensation in PTAT Temperature Sensors and Bandgap Reference Circuits. International Journal of Electronics, 2004, 91, 259-269.	0.9	2
40	A Fuzzy Gain Scheduling Scheme for the Pli $\!$	2.3	0
41	Modeling Surface Finish in End Milling Using Fuzzy Subtractive Clustering-Based System Identification Method. Materials and Manufacturing Processes, 2003, 18, 653-665.	2.7	8
42	A modified PID controller (PIIÏ f βD). Journal of the Franklin Institute, 2002, 339, 543-553.	1.9	11
43	The Effect of the Increase in Graphite Volumetric Percentage on the Strength and Hardness of Al-4 Weight Percent Mg-Graphite Composites. Journal of Materials Engineering and Performance, 2002, 11, 250-255.	1.2	9
44	HOLE QUALITY IN DEEP HOLE DRILLING. Materials and Manufacturing Processes, 2001, 16, 147-164.	2.7	30
45	Re-evaluation of the basic mechanics of orthogonal metal cutting: velocity diagram, virtual work equation and upper-bound theorem. International Journal of Machine Tools and Manufacture, 2001, 41, 393-418.	6.2	43
46	The Effect of Graphite Particles Addition on the Surface Finish of Machined Al-4 Wt.% Mg Alloys. Journal of Materials Engineering and Performance, 2001, 10, 521-525.	1.2	11
47	Statistical Analysis of the Effects of Machining Parameters and Workpiece Hardness on the Surface Finish of Machined Medium Carbon Steel. Journal of Materials Engineering and Performance, 2001, 10, 282-289.	1.2	8
48	SANDWICH STRUCTURE DELAMINATION OF RESIN TRANSFER MOLDING. Materials and Manufacturing Processes, 2001, 16, 27-45.	2.7	2
49	An Investigation for the Potential of Improving the Performance of Pattern Making Process in Steel Foundries: Case Study. Applied Mechanics and Materials, 0, 575, 900-904.	0.2	0
50	Eco-material selection using fuzzy TOPSIS method. International Journal of Sustainable Engineering, 0, , 1-13.	1.9	22