
Shi-Bi Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/159441/publications.pdf Version: 2024-02-01

SHI-RI LII

#	Article	IF	CITATIONS
1	Injectable adipose-derived stem cells-embedded alginate-gelatin microspheres prepared by electrospray for cartilage tissue regeneration. Journal of Orthopaedic Translation, 2022, 33, 174-185.	3.9	7
2	Potential and recent advances of microcarriers in repairing cartilage defects. Journal of Orthopaedic Translation, 2021, 27, 101-109.	3.9	12
3	Local administration of zoledronic acid prevents traumatic osteonecrosis of the femoral head in rat model. Journal of Orthopaedic Translation, 2021, 27, 132-138.	3.9	7
4	Diffusion of neutral solutes within human osteoarthritic cartilage: Effect of loading patterns. Journal of Orthopaedic Translation, 2020, 22, 58-66.	3.9	6
5	Three-dimensional distribution of cystic lesions in osteonecrosis of the femoral head. Journal of Orthopaedic Translation, 2020, 22, 109-115.	3.9	16
6	<p>Construction of Microunits by Adipose-Derived Mesenchymal Stem Cells Laden with Porous Microcryogels for Repairing an Acute Achilles Tendon Rupture in a Rat Model</p> . International Journal of Nanomedicine, 2020, Volume 15, 7155-7171.	6.7	12
7	Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomaterialia, 2020, 114, 31-52.	8.3	64
8	One‣tage Total Hip Arthroplasty with Modular <scp>Sâ€ROM</scp> Stem for Patients with Bilateral Crowe Type <scp>IV</scp> Developmental Dysplasia. Orthopaedic Surgery, 2020, 12, 1913-1922.	1.8	11
9	Co-culture of hWJMSCs and pACs in double biomimetic ACECM oriented scaffold enhances mechanical properties and accelerates articular cartilage regeneration in a caprine model. Stem Cell Research and Therapy, 2020, 11, 180.	5.5	15
10	Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. Journal of Orthopaedic Translation, 2019, 16, 62-70.	3.9	36
11	Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Journal of Orthopaedic Translation, 2019, 18, 128-141.	3.9	49
12	Enrichment of CD146 ⁺ Adipose-Derived Stem Cells in Combination with Articular Cartilage Extracellular Matrix Scaffold Promotes Cartilage Regeneration. Theranostics, 2019, 9, 5105-5121.	10.0	60
13	Novel 3-D helix-flexible nerve guide conduits repair nerve defects. Biomaterials, 2019, 207, 49-60.	11.4	40
14	Coculture of hWJMSCs and pACs in Oriented Scaffold Enhances Hyaline Cartilage Regeneration <i>In Vitro</i> . Stem Cells International, 2019, 2019, 1-11.	2.5	14
15	AAV-Anti-miR-214 Prevents Collapse of the Femoral Head in Osteonecrosis by Regulating Osteoblast and Osteoclast Activities. Molecular Therapy - Nucleic Acids, 2019, 18, 841-850.	5.1	24
16	Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. Nanoscale, 2019, 11, 19943-19958.	5.6	62
17	Saline Solution Lavage and Reaspiration for Culture with a Blood Culture System Is a Feasible Method for Diagnosing Periprosthetic Joint Infection in Patients with Insufficient Synovial Fluid. Journal of Bone and Joint Surgery - Series A, 2019, 101, 1004-1009.	3.0	27
18	Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage. Neural Regeneration Research, 2019, 14, 903.	3.0	39

Sнı-Bı Lu

#	Article	IF	CITATIONS
19	Quantifying the degradation of degradable implants and bone formation in the femoral condyle using microâ€CT 3D reconstruction. Experimental and Therapeutic Medicine, 2018, 15, 93-102.	1.8	11
20	Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials, 2018, 171, 118-132.	11.4	77
21	hWJECM-Derived Oriented Scaffolds with Autologous Chondrocytes for Rabbit Cartilage Defect Repairing. Tissue Engineering - Part A, 2018, 24, 905-914.	3.1	16
22	A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. Nano Research, 2018, 11, 4599-4613.	10.4	43
23	Coâ€culture systemsâ€based strategies for articular cartilage tissue engineering. Journal of Cellular Physiology, 2018, 233, 1940-1951.	4.1	37
24	Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells: Characterization, Differentiation, and Applications in Cartilage Tissue Engineering. Critical Reviews in Eukaryotic Gene Expression, 2018, 28, 285-310.	0.9	61
25	Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research. Stem Cell Research and Therapy, 2018, 9, 291.	5.5	44
26	The optimal time to inject bone mesenchymal stem cells for fracture healing in a murine model. Stem Cell Research and Therapy, 2018, 9, 272.	5.5	35
27	Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics, 2018, 8, 5039-5058.	10.0	93
28	In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System. ACS Applied Materials & Interfaces, 2018, 10, 38715-38728.	8.0	68
29	Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model. Stem Cells International, 2018, 2018, 1-12.	2.5	25
30	Analysis of early stage osteonecrosis of the human femoral head and the mechanism of femoral head collapse. International Journal of Biological Sciences, 2018, 14, 156-164.	6.4	44
31	Acellular Cauda Equina Allograft as Main Material Combined with Biodegradable Chitin Conduit for Regeneration of Longâ€Distance Sciatic Nerve Defect in Rats. Advanced Healthcare Materials, 2018, 7, e1800276.	7.6	26
32	Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomaterialia, 2018, 77, 127-141.	8.3	61
33	Centrifugation May Change the Results of Leukocyte Esterase Strip Testing in the Diagnosis of Periprosthetic Joint Infection. Journal of Arthroplasty, 2018, 33, 2981-2985.	3.1	18
34	Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Research and Therapy, 2018, 9, 133.	5.5	47
35	Cell-Free Strategies for Repair and Regeneration of Meniscus Injuries through the Recruitment of Endogenous Stem/Progenitor Cells. Stem Cells International, 2018, 2018, 1-10.	2.5	25
36	Fabrication and In Vitro Study of Tissue-Engineered Cartilage Scaffold Derived from Wharton's Jelly Extracellular Matrix. BioMed Research International, 2017, 2017, 1-12.	1.9	19

Sнı-Bı Lu

#	Article	IF	CITATIONS
37	Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model. BioMed Research International, 2017, 2017, 1-12.	1.9	32
38	Advances and Prospects in Stem Cells for Cartilage Regeneration. Stem Cells International, 2017, 2017, 1-16.	2.5	49
39	An updated meta-analysis of the asporin gene D-repeat in knee osteoarthritis: effects of gender and ethnicity. Journal of Orthopaedic Surgery and Research, 2017, 12, 148.	2.3	9
40	Autologous-cell-derived, tissue-engineered cartilage for repairing articular cartilage lesions in the knee: study protocol for a randomized controlled trial. Trials, 2017, 18, 519.	1.6	13
41	The Scaphoid Safe Zone: A Radiographic Simulation Study to Prevent Cortical Perforation Arising from Different Views. PLoS ONE, 2017, 12, e0170677.	2.5	3
42	Extracellular Vesicles and Autophagy in Osteoarthritis. BioMed Research International, 2016, 2016, 1-8.	1.9	22
43	Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 601-610.	3.4	8
44	Identification of Changes in Gene expression of rats after Sensory and Motor Nerves Injury. Scientific Reports, 2016, 6, 26579.	3.3	6
45	Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomaterialia, 2016, 33, 96-109.	8.3	105
46	Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration. Neural Regeneration Research, 2016, 11, 1172.	3.0	20
47	Comparisons of Emu Necrotic Femoral Head Micro Structure Repaired in Two Different Methods. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae, 2016, 38, 16-21.	0.2	1
48	Chondrogenic differentiation of human adipose-derived stem cells using microcarrier and bioreactor combination technique. Molecular Medicine Reports, 2015, 11, 1195-1199.	2.4	9
49	MicroRNAs' Involvement in Osteoarthritis and the Prospects for Treatments. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-13.	1.2	44
50	Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration. Stem Cells International, 2015, 2015, 1-13.	2.5	36
51	Past, present, and future of microcarrier-based tissue engineering. Journal of Orthopaedic Translation, 2015, 3, 51-57.	3.9	79
52	Application of bone marrow mesenchymal stem cells to the treatment of osteonecrosis of the femoral head. International Journal of Clinical and Experimental Medicine, 2015, 8, 3127-35.	1.3	19
53	Controlled Delivery of Zoledronate Improved Bone Formation Locally In Vivo. PLoS ONE, 2014, 9, e91317.	2.5	17
54	Bone Microstructure and Regional Distribution of Osteoblast and Osteoclast Activity in the Osteonecrotic Femoral Head. PLoS ONE, 2014, 9, e96361.	2.5	61

Sнı-Bı Lu

#	Article	IF	CITATIONS
55	Effect of Cervus and Cucumis Peptides on Osteoblast Activity and Fracture Healing in Osteoporotic Bone. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-10.	1.2	6
56	The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes. BioMed Research International, 2014, 2014, 1-8.	1.9	215
57	Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Journal of Bioscience and Bioengineering, 2014, 117, 229-235.	2.2	47
58	Cartilage Repair Using Human Embryonic Stem Cell-Derived Chondroprogenitors. Stem Cells Translational Medicine, 2014, 3, 1287-1294.	3.3	101
59	Summary of the various treatments for osteonecrosis of the femoral head by mechanism: A review. Experimental and Therapeutic Medicine, 2014, 8, 700-706.	1.8	51
60	Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neuroscience Letters, 2012, 514, 96-101.	2.1	97
61	Gene expression profiling of the rat sciatic nerve in early Wallerian degeneration after injury. Neural Regeneration Research, 2012, 7, 1285-92.	3.0	15
62	Protein expression of sensory and motor nerves: Two-dimensional gel electrophoresis and mass spectrometry. Neural Regeneration Research, 2012, 7, 369-75.	3.0	1
63	Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Research Bulletin, 2011, 84, 235-243.	3.0	124
64	Mesenchymal stem cells on a decellularized cartilage matrix for cartilage tissue engineering. Biotechnology and Bioprocess Engineering, 2011, 16, 593-602.	2.6	30