Shi-Bi Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/159441/publications.pdf

Version: 2024-02-01

147801 214800 2,474 64 31 47 citations h-index g-index papers 67 67 67 3921 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes. BioMed Research International, 2014, 2014, 1-8.	1.9	215
2	Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro. Brain Research Bulletin, 2011, 84, 235-243.	3.0	124
3	Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles. Acta Biomaterialia, 2016, 33, 96-109.	8.3	105
4	Cartilage Repair Using Human Embryonic Stem Cell-Derived Chondroprogenitors. Stem Cells Translational Medicine, 2014, 3, 1287-1294.	3 . 3	101
5	Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neuroscience Letters, 2012, 514, 96-101.	2.1	97
6	Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics, 2018, 8, 5039-5058.	10.0	93
7	Past, present, and future of microcarrier-based tissue engineering. Journal of Orthopaedic Translation, 2015, 3, 51-57.	3.9	79
8	Fabrication of nanofibrous microcarriers mimicking extracellular matrix for functional microtissue formation and cartilage regeneration. Biomaterials, 2018, 171, 118-132.	11.4	77
9	In Situ Articular Cartilage Regeneration through Endogenous Reparative Cell Homing Using a Functional Bone Marrow-Specific Scaffolding System. ACS Applied Materials & Interfaces, 2018, 10, 38715-38728.	8.0	68
10	Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomaterialia, 2020, 114, 31-52.	8.3	64
11	Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. Nanoscale, 2019, 11, 19943-19958.	5.6	62
12	Bone Microstructure and Regional Distribution of Osteoblast and Osteoclast Activity in the Osteonecrotic Femoral Head. PLoS ONE, 2014, 9, e96361.	2.5	61
13	Bone Marrow- and Adipose Tissue-Derived Mesenchymal Stem Cells: Characterization, Differentiation, and Applications in Cartilage Tissue Engineering. Critical Reviews in Eukaryotic Gene Expression, 2018, 28, 285-310.	0.9	61
14	Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomaterialia, 2018, 77, 127-141.	8.3	61
15	Enrichment of CD146 ⁺ Adipose-Derived Stem Cells in Combination with Articular Cartilage Extracellular Matrix Scaffold Promotes Cartilage Regeneration. Theranostics, 2019, 9, 5105-5121.	10.0	60
16	Summary of the various treatments for osteonecrosis of the femoral head by mechanism: A review. Experimental and Therapeutic Medicine, 2014, 8, 700-706.	1.8	51
17	Advances and Prospects in Stem Cells for Cartilage Regeneration. Stem Cells International, 2017, 2017, 1-16.	2.5	49
18	Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Journal of Orthopaedic Translation, 2019, 18, 128-141.	3.9	49

#	Article	IF	CITATIONS
19	Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage. Journal of Bioscience and Bioengineering, 2014, 117, 229-235.	2.2	47
20	Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Research and Therapy, 2018, 9, 133.	5 . 5	47
21	MicroRNAs' Involvement in Osteoarthritis and the Prospects for Treatments. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-13.	1.2	44
22	Stem cell therapy for treating osteonecrosis of the femoral head: From clinical applications to related basic research. Stem Cell Research and Therapy, 2018, 9, 291.	5 . 5	44
23	Analysis of early stage osteonecrosis of the human femoral head and the mechanism of femoral head collapse. International Journal of Biological Sciences, 2018, 14, 156-164.	6.4	44
24	A neurotrophic peptide-functionalized self-assembling peptide nanofiber hydrogel enhances rat sciatic nerve regeneration. Nano Research, 2018, 11, 4599-4613.	10.4	43
25	Novel 3-D helix-flexible nerve guide conduits repair nerve defects. Biomaterials, 2019, 207, 49-60.	11.4	40
26	Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage. Neural Regeneration Research, 2019, 14, 903.	3.0	39
27	Coâ€culture systemsâ€based strategies for articular cartilage tissue engineering. Journal of Cellular Physiology, 2018, 233, 1940-1951.	4.1	37
28	Advances and Prospects in Tissue-Engineered Meniscal Scaffolds for Meniscus Regeneration. Stem Cells International, 2015, 2015, 1-13.	2.5	36
29	Use of a three-dimensional printed polylactide-coglycolide/tricalcium phosphate composite scaffold incorporating magnesium powder to enhance bone defect repair in rabbits. Journal of Orthopaedic Translation, 2019, 16, 62-70.	3.9	36
30	The optimal time to inject bone mesenchymal stem cells for fracture healing in a murine model. Stem Cell Research and Therapy, 2018, 9, 272.	5 . 5	35
31	Repair of Osteochondral Defects Using Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model. BioMed Research International, 2017, 2017, 1-12.	1.9	32
32	Mesenchymal stem cells on a decellularized cartilage matrix for cartilage tissue engineering. Biotechnology and Bioprocess Engineering, 2011, 16, 593-602.	2.6	30
33	Saline Solution Lavage and Reaspiration for Culture with a Blood Culture System Is a Feasible Method for Diagnosing Periprosthetic Joint Infection in Patients with Insufficient Synovial Fluid. Journal of Bone and Joint Surgery - Series A, 2019, 101, 1004-1009.	3.0	27
34	Acellular Cauda Equina Allograft as Main Material Combined with Biodegradable Chitin Conduit for Regeneration of Longâ€Distance Sciatic Nerve Defect in Rats. Advanced Healthcare Materials, 2018, 7, e1800276.	7.6	26
35	Mesenchymal Stem Cells in Oriented PLGA/ACECM Composite Scaffolds Enhance Structure-Specific Regeneration of Hyaline Cartilage in a Rabbit Model. Stem Cells International, 2018, 2018, 1-12.	2.5	25
36	Cell-Free Strategies for Repair and Regeneration of Meniscus Injuries through the Recruitment of Endogenous Stem/Progenitor Cells. Stem Cells International, 2018, 2018, 1-10.	2. 5	25

#	Article	IF	Citations
37	AAV-Anti-miR-214 Prevents Collapse of the Femoral Head in Osteonecrosis by Regulating Osteoblast and Osteoclast Activities. Molecular Therapy - Nucleic Acids, 2019, 18, 841-850.	5.1	24
38	Extracellular Vesicles and Autophagy in Osteoarthritis. BioMed Research International, 2016, 2016, 1-8.	1.9	22
39	Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration. Neural Regeneration Research, 2016, 11, 1172.	3.0	20
40	Fabrication and In Vitro Study of Tissue-Engineered Cartilage Scaffold Derived from Wharton's Jelly Extracellular Matrix. BioMed Research International, 2017, 2017, 1-12.	1.9	19
41	Application of bone marrow mesenchymal stem cells to the treatment of osteonecrosis of the femoral head. International Journal of Clinical and Experimental Medicine, 2015, 8, 3127-35.	1.3	19
42	Centrifugation May Change the Results of Leukocyte Esterase Strip Testing in the Diagnosis of Periprosthetic Joint Infection. Journal of Arthroplasty, 2018, 33, 2981-2985.	3.1	18
43	Controlled Delivery of Zoledronate Improved Bone Formation Locally In Vivo. PLoS ONE, 2014, 9, e91317.	2.5	17
44	hWJECM-Derived Oriented Scaffolds with Autologous Chondrocytes for Rabbit Cartilage Defect Repairing. Tissue Engineering - Part A, 2018, 24, 905-914.	3.1	16
45	Three-dimensional distribution of cystic lesions in osteonecrosis of the femoral head. Journal of Orthopaedic Translation, 2020, 22, 109-115.	3.9	16
46	Co-culture of hWJMSCs and pACs in double biomimetic ACECM oriented scaffold enhances mechanical properties and accelerates articular cartilage regeneration in a caprine model. Stem Cell Research and Therapy, 2020, 11, 180.	5 . 5	15
47	Gene expression profiling of the rat sciatic nerve in early Wallerian degeneration after injury. Neural Regeneration Research, 2012, 7, 1285-92.	3.0	15
48	Coculture of hWJMSCs and pACs in Oriented Scaffold Enhances Hyaline Cartilage Regeneration <i>In Vitro</i> . Stem Cells International, 2019, 2019, 1-11.	2.5	14
49	Autologous-cell-derived, tissue-engineered cartilage for repairing articular cartilage lesions in the knee: study protocol for a randomized controlled trial. Trials, 2017, 18, 519.	1.6	13
50	<p>Construction of Microunits by Adipose-Derived Mesenchymal Stem Cells Laden with Porous Microcryogels for Repairing an Acute Achilles Tendon Rupture in a Rat Model</p> . International Journal of Nanomedicine, 2020, Volume 15, 7155-7171.	6.7	12
51	Potential and recent advances of microcarriers in repairing cartilage defects. Journal of Orthopaedic Translation, 2021, 27, 101-109.	3.9	12
52	Quantifying the degradation of degradable implants and bone formation in the femoral condyle using micro‑CT 3D reconstruction. Experimental and Therapeutic Medicine, 2018, 15, 93-102.	1.8	11
53	Oneâ€Stage Total Hip Arthroplasty with Modular <scp>Sâ€ROM</scp> Stem for Patients with Bilateral Crowe Type <scp>IV</scp> Developmental Dysplasia. Orthopaedic Surgery, 2020, 12, 1913-1922.	1.8	11
54	Chondrogenic differentiation of human adipose-derived stem cells using microcarrier and bioreactor combination technique. Molecular Medicine Reports, 2015, 11, 1195-1199.	2.4	9

#	Article	IF	CITATIONS
55	An updated meta-analysis of the asporin gene D-repeat in knee osteoarthritis: effects of gender and ethnicity. Journal of Orthopaedic Surgery and Research, 2017, 12, 148.	2.3	9
56	Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 601-610.	3.4	8
57	Local administration of zoledronic acid prevents traumatic osteonecrosis of the femoral head in rat model. Journal of Orthopaedic Translation, 2021, 27, 132-138.	3.9	7
58	Injectable adipose-derived stem cells-embedded alginate-gelatin microspheres prepared by electrospray for cartilage tissue regeneration. Journal of Orthopaedic Translation, 2022, 33, 174-185.	3.9	7
59	Effect of Cervus and Cucumis Peptides on Osteoblast Activity and Fracture Healing in Osteoporotic Bone. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-10.	1.2	6
60	Identification of Changes in Gene expression of rats after Sensory and Motor Nerves Injury. Scientific Reports, 2016, 6, 26579.	3.3	6
61	Diffusion of neutral solutes within human osteoarthritic cartilage: Effect of loading patterns. Journal of Orthopaedic Translation, 2020, 22, 58-66.	3.9	6
62	The Scaphoid Safe Zone: A Radiographic Simulation Study to Prevent Cortical Perforation Arising from Different Views. PLoS ONE, 2017, 12, e0170677.	2.5	3
63	Protein expression of sensory and motor nerves: Two-dimensional gel electrophoresis and mass spectrometry. Neural Regeneration Research, 2012, 7, 369-75.	3.0	1
64	Comparisons of Emu Necrotic Femoral Head Micro Structure Repaired in Two Different Methods. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae, 2016, 38, 16-21.	0.2	1