Rula Zain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594269/publications.pdf Version: 2024-02-01

DILLA ZAIN

#	Article	IF	CITATIONS
1	Covid-19 in patients with chronic lymphocytic leukemia: clinical outcome and B- and T-cell immunity during 13 months in consecutive patients. Leukemia, 2022, 36, 476-481.	3.3	25
2	Growth Media Conditions Influence the Secretion Route and Release Levels of Engineered Extracellular Vesicles. Advanced Healthcare Materials, 2022, 11, e2101658.	3.9	28
3	Structural Insights into Human Adenovirus Type 4 Virus-Associated RNA I. International Journal of Molecular Sciences, 2022, 23, 3103.	1.8	0
4	Do reduced numbers of plasmacytoid dendritic cells contribute to the aggressive clinical course of COVIDâ€19 in chronic lymphocytic leukaemia?. Scandinavian Journal of Immunology, 2022, 95, e13153.	1.3	5
5	2′- <i>O</i> -(<i>N</i> -(Aminoethyl)carbamoyl)methyl Modification Allows for Lower Phosphorothioate Content in Splice-Switching Oligonucleotides with Retained Activity. Nucleic Acid Therapeutics, 2022, ,	2.0	4
6	Lipophilic Peptide Dendrimers for Delivery of Splice-Switching Oligonucleotides. Pharmaceutics, 2021, 13, 116.	2.0	5
7	BTK gatekeeper residue variation combined with cysteine 481 substitution causes super-resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia, 2021, 35, 1317-1329.	3.3	35
8	Comparative Analysis of BTK Inhibitors and Mechanisms Underlying Adverse Effects. Frontiers in Cell and Developmental Biology, 2021, 9, 630942.	1.8	119
9	Ibrutinib Has Time-dependent On- and Off-target Effects on Plasma Biomarkers and Immune Cells in Chronic Lymphocytic Leukemia. HemaSphere, 2021, 5, e564.	1.2	15
10	Structure-Function Relationships of Covalent and Non-Covalent BTK Inhibitors. Frontiers in Immunology, 2021, 12, 694853.	2.2	30
11	Oligonucleotides Targeting DNA Repeats Downregulate <i>Huntingtin</i> Gene Expression in Huntington's Patient-Derived Neural Model System. Nucleic Acid Therapeutics, 2021, 31, 443-456.	2.0	4
12	Editorial: New Insights on Bruton's Tyrosine Kinase Inhibitors. Frontiers in Immunology, 2021, 12, 804735.	2.2	1
13	Novel mouse model resistant to irreversible BTK inhibitors: a tool identifying new therapeutic targets and side effects. Blood Advances, 2020, 4, 2439-2450.	2.5	15
14	Chemical Development of Therapeutic Oligonucleotides. Methods in Molecular Biology, 2019, 2036, 3-16.	0.4	14
15	Targeted Oligonucleotides for Treating Neurodegenerative Tandem Repeat Diseases. Neurotherapeutics, 2019, 16, 248-262.	2.1	18
16	Oligonucleotide Binding to Non-B-DNA in MYC. Molecules, 2019, 24, 1000.	1.7	5
17	Oligonucleotide–Palladacycle Conjugates as Splice-Correcting Agents. Molecules, 2019, 24, 1180.	1.7	10
18	The ability of locked nucleic acid oligonucleotides to pre-structure the double helix: A molecular simulation and binding study. PLoS ONE, 2019, 14, e0211651.	1.1	7

Rula Zain

#	Article	IF	CITATIONS
19	Sugar and Polymer Excipients Enhance Uptake and Splice-Switching Activity of Peptide-Dendrimer/Lipid/Oligonucleotide Formulations. Pharmaceutics, 2019, 11, 666.	2.0	10
20	Therapeutic Oligonucleotides: State of the Art. Annual Review of Pharmacology and Toxicology, 2019, 59, 605-630.	4.2	208
21	Combination of Gatekeeper Mutations and Cysteine 481 Replacement Causes Super Resistance to the Irreversible BTK Inhibitors Ibrutinib, Acalabrutinib and Zanubrutinib. Blood, 2019, 134, 5759-5759.	0.6	2
22	Translocation-generated ITK-FER and ITK-SYK fusions induce STAT3 phosphorylation and CD69 expression. Biochemical and Biophysical Research Communications, 2018, 504, 749-752.	1.0	8
23	Novel peptide-dendrimer/lipid/oligonucleotide ternary complexes for efficient cellular uptake and improved splice-switching activity. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 29-40.	2.0	17
24	Role of Pseudoisocytidine Tautomerization in Triplex-Forming Oligonucleotides: In Silico and in Vitro Studies. ACS Omega, 2017, 2, 2165-2177.	1.6	9
25	CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Research, 2017, 45, 5153-5169.	6.5	19
26	LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Scientific Reports, 2017, 7, 11043.	1.6	28
27	Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting. PLoS ONE, 2016, 11, e0165788.	1.1	18
28	Four Novel Splice-Switch Reporter Cell Lines: Distinct Impact of Oligonucleotide Chemistry and Delivery Vector on Biological Activity. Nucleic Acid Therapeutics, 2016, 26, 381-391.	2.0	12
29	Next-generation bis-locked nucleic acids with stacking linker and 2′-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Research, 2016, 44, 2007-2019.	6.5	24
30	Delivery, Effect on Cell Viability, and Plasticity of Modified Aptamer Constructs. Nucleic Acid Therapeutics, 2016, 26, 183-189.	2.0	8
31	A Distinct Triplex DNA Unwinding Activity of ChlR1 Helicase. Journal of Biological Chemistry, 2015, 290, 5174-5189.	1.6	45
32	Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Research, 2013, 41, 3257-3273.	6.5	25
33	Structure‧pecific Recognition of Friedreich's Ataxia (GAA) _{<i>n</i>} Repeats by Benzoquinoquinoxaline Derivatives. ChemBioChem, 2009, 10, 2629-2637.	1.3	20
34	Benzoquinoquinoxaline Derivatives Stabilize and Cleave H-DNA and Repress Transcription Downstream of a Triplex-forming Sequence. Journal of Molecular Biology, 2005, 351, 776-783.	2.0	16
35	Triple-Helix Directed Cleavage of Double-Stranded DNA by Benzoquinoquinoxaline-1,10-phenanthroline Conjugates. ChemBioChem, 2004, 5, 1550-1557.	1.3	33
36	Optimization of Triple-Helix-Directed DNA Cleavage by Benzoquinoquinoxaline-Ethylenediaminetetraacetic Acid Conjugates. ChemBioChem, 2003, 4, 856-862.	1.3	9

#	Article	IF	CITATIONS
37	Design of a triple-helix-specific cleaving reagent. Chemistry and Biology, 1999, 6, 771-777.	6.2	48