Morten Thaysen-Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>N</i> -acetyl·l²-D-hexosaminidases mediate the generation of paucimannosidic proteins via a putative noncanonical truncation pathway in human neutrophils. Glycobiology, 2022, 32, 218-229.	2.5	15
2	Glycoproteomics. Nature Reviews Methods Primers, 2022, 2, .	21.2	61
3	Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Molecular Aspects of Medicine, 2021, 79, 100882.	6.4	26
4	Glycomics & amp; Glycoproteomics: From Analytics to Function. Molecular Omics, 2021, 17, 8-10.	2.8	19
5	The Complexity and Dynamics of the Tissue Glycoproteome Associated With Prostate Cancer Progression. Molecular and Cellular Proteomics, 2021, 20, 100026.	3.8	39
6	Integrated Glycoproteomics Identifies a Role of N-Glycosylation and Galectin-1 on Myogenesis and Muscle Development. Molecular and Cellular Proteomics, 2021, 20, 100030.	3.8	31
7	Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. Journal of Biological Chemistry, 2021, 296, 100144.	3.4	31
8	Serum N-Glycomics Stratifies Bacteremic Patients Infected with Different Pathogens. Journal of Clinical Medicine, 2021, 10, 516.	2.4	12
9	Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Reports, 2021, 35, 109179.	6.4	63
10	The Hitchhiker's guide to glycoproteomics. Biochemical Society Transactions, 2021, 49, 1643-1662.	3.4	25
11	Macrophage-derived secretome is sufficient to confer olanzapine-mediated insulin resistance in human adipocytes. Comprehensive Psychoneuroendocrinology, 2021, 7, 100073.	1.7	4
12	Systems-wide analysis of glycoprotein conformational changes by limited deglycosylation assay. Journal of Proteomics, 2021, 248, 104355.	2.4	2
13	A pain-causing and paralytic ant venom glycopeptide. IScience, 2021, 24, 103175.	4.1	7
14	Towards structure-focused glycoproteomics. Biochemical Society Transactions, 2021, 49, 161-186.	3.4	60
15	Trends in oligomannosylation and α1,2-mannosidase expression in human cancers. Oncotarget, 2021, 12, 2188-2205.	1.8	17
16	Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nature Methods, 2021, 18, 1304-1316.	19.0	74
17	Glycan analysis of human neutrophil granules implicates a maturation-dependent glycosylation machinery. Journal of Biological Chemistry, 2020, 295, 12648-12660.	3.4	22
18	Pyrexia and acidosis act independently of neutrophil elastase reactive center loop cleavage to effect cortisol release from corticosteroidâ€binding globulin. Protein Science, 2020, 29, 2495-2509.	7.6	7

#	Article	IF	CITATIONS
19	High-resolution longitudinal N- and O-glycoprofiling of human monocyte-to-macrophage transition. Glycobiology, 2020, 30, 679-694.	2.5	26
20	Glycoengineered hepatitis B virus-like particles with enhanced immunogenicity. Vaccine, 2020, 38, 3892-3901.	3.8	23
21	Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biological Reviews, 2019, 94, 2068-2100.	10.4	39
22	Protein Paucimannosylation Is an Enriched <i>N</i> â€Glycosylation Signature of Human Cancers. Proteomics, 2019, 19, e1900010.	2.2	52
23	Structural basis for the recognition of nectin-like protein-5 by the human-activating immune receptor, DNAM-1. Journal of Biological Chemistry, 2019, 294, 12534-12546.	3.4	13
24	Tissue Proteome Signatures Associated with Five Grades of Prostate Cancer and Benign Prostatic Hyperplasia. Proteomics, 2019, 19, e1900174.	2.2	27
25	Specific Sialoforms Required for the Immune Suppressive Activity of Human Soluble CD52. Frontiers in Immunology, 2019, 10, 1967.	4.8	14
26	Post-Column Make-Up Flow (PCMF) Enhances the Performance of Capillary-Flow PGC-LC-MS/MS-Based Glycomics. Analytical Chemistry, 2019, 91, 4559-4567.	6.5	42
27	N-Glycosylation influences human corticosteroid-binding globulin measurements. Endocrine Connections, 2019, 8, 1136-1148.	1.9	4
28	Paucimannosidic glycoepitopes inhibit tumorigenic processes in glioblastoma multiforme. Oncotarget, 2019, 10, 4449-4465.	1.8	11
29	Discrimination of Isomers of Released <i>N-</i> and <i>O-</i> Glycans Using Diagnostic Product Ions in Negative Ion PGC-LC-ESI-MS/MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 1194-1209.	2.8	84
30	Distinct urinary glycoprotein signatures in prostate cancer patients. Oncotarget, 2018, 9, 33077-33097.	1.8	33
31	Comprehensive glycoprofiling of the epimastigote and trypomastigote stages of Trypanosoma cruzi. Journal of Proteomics, 2017, 151, 182-192.	2.4	52
32	N-glycosylation of human sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) is essential for stability, secretion and activity. Biochemical Journal, 2017, 474, 1071-1092.	3.7	20
33	<i>N</i> â€glycan maturation mutants in <i>Lotus japonicus</i> for basic and applied glycoprotein research. Plant Journal, 2017, 91, 394-407.	5.7	25
34	Paucimannose-Rich N-glycosylation of Spatiotemporally Regulated Human Neutrophil Elastase Modulates Its Immune Functions* Molecular and Cellular Proteomics, 2017, 16, 1507-1527.	3.8	57
35	<i>Mycobacterium tuberculosis</i> Infection Manipulates the Glycosylation Machinery and the <i>N</i> -Glycoproteome of Human Macrophages and Their Microparticles. Journal of Proteome Research, 2017, 16, 247-263.	3.7	36
36	Site-Specific <i>N</i> -Glycosylation of Recombinant Pentameric and Hexameric Human IgM. Journal of the American Society for Mass Spectrometry, 2016, 27, 1143-1155.	2.8	38

#	Article	IF	CITATIONS
37	Emerging roles of protein mannosylation in inflammation and infection. Molecular Aspects of Medicine, 2016, 51, 31-55.	6.4	74
38	Toward Automated <i>N</i> -Glycopeptide Identification in Glycoproteomics. Journal of Proteome Research, 2016, 15, 3904-3915.	3.7	105
39	Human macrophage cathepsin βâ€mediated Câ€ŧerminal cleavage of apolipoprotein α″ at Ser ²²⁸ severely impairs antiatherogenic capacity. FASEB Journal, 2016, 30, 4239-4255.	0.5	17
40	Asn347 Glycosylation of Corticosteroid-binding Globulin Fine-tunes the Host Immune Response by Modulating Proteolysis by Pseudomonas aeruginosa and Neutrophil Elastase. Journal of Biological Chemistry, 2016, 291, 17727-17742.	3.4	27
41	Recombinant human heterodimeric IL-15 complex displays extensive and reproducible N- and O-linked glycosylation. Glycoconjugate Journal, 2016, 33, 417-433.	2.7	28
42	Comparison of analytical methods for profiling N- and O-linked glycans from cultured cell lines. Glycoconjugate Journal, 2016, 33, 405-415.	2.7	25
43	<i>FUT1</i> genetic variants impact protein glycosylation of porcine intestinal mucosa. Glycobiology, 2016, 26, 607-622.	2.5	15
44	Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Molecular and Cellular Proteomics, 2016, 15, 1773-1790.	3.8	166
45	Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes. Molecular and Cellular Proteomics, 2016, 15, 141-153.	3.8	80
46	Relative versus absolute quantitation in disease glycomics. Proteomics - Clinical Applications, 2015, 9, 368-382.	1.6	43
47	A Defined αâ€Helix in the Bifunctional <i>O</i> â€Glycosylated Natriuretic Peptide TcNPa from the Venom of <i>Tropidechis carinatus</i> . Angewandte Chemie - International Edition, 2015, 54, 4828-4831.	13.8	7
48	Complementary LC-MS/MS-Based N-Glycan, N-Glycopeptide, and Intact N-Glycoprotein Profiling Reveals Unconventional Asn71-Glycosylation of Human Neutrophil Cathepsin G. Biomolecules, 2015, 5, 1832-1854.	4.0	49
49	Cystic fibrosis and bacterial colonization define the sputum N-glycosylation phenotype. Glycobiology, 2015, 25, 88-100.	2.5	38
50	Human Neutrophils Secrete Bioactive Paucimannosidic Proteins from Azurophilic Granules into Pathogen-Infected Sputum. Journal of Biological Chemistry, 2015, 290, 8789-8802.	3.4	90
51	In-depth <i>N</i> -glycome profiling of paired colorectal cancer and non-tumorigenic tissues reveals cancer-, stage- and EGFR-specific protein N-glycosylation. Glycobiology, 2015, 25, 1064-1078.	2.5	74
52	Quantitative proteomic analysis of paired colorectal cancer and non-tumorigenic tissues reveals signature proteins and perturbed pathways involved in CRC progression and metastasis. Journal of Proteomics, 2015, 126, 54-67.	2.4	34
53	Paucimannosidic glycoepitopes are functionally involved in proliferation of neural progenitor cells in the subventricular zone. Glycobiology, 2015, 25, 869-880.	2.5	26
54	Modification of Asparagine-Linked Glycan Density for the Design of Hepatitis B Virus Virus-Like Particles with Enhanced Immunogenicity. Journal of Virology, 2015, 89, 11312-11322.	3.4	35

#	Article	IF	CITATIONS
55	Differential Site Accessibility Mechanistically Explains Subcellular-Specific N-Glycosylation Determinants. Frontiers in Immunology, 2014, 5, 404.	4.8	50
56	Advances in LC–MS/MS-based glycoproteomics: Getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1437-1452.	2.3	183
57	Purification and characterization of bioactive his6-tagged recombinant human tissue inhibitor of metalloproteinases-1 (TIMP-1) protein expressed at high yields in mammalian cells. Protein Expression and Purification, 2014, 101, 157-164.	1.3	8
58	Comparative Proteomics and Glycoproteomics Reveal Increased N-Linked Glycosylation and Relaxed Sequon Specificity in Campylobacter jejuni NCTC11168 O. Journal of Proteome Research, 2014, 13, 5136-5150.	3.7	48
59	Comprehensive N-Glycome Profiling of Cultured Human Epithelial Breast Cells Identifies Unique Secretome N-Glycosylation Signatures Enabling Tumorigenic Subtype Classification. Journal of Proteome Research, 2014, 13, 4783-4795.	3.7	39
60	Synthesis and immunological evaluation of self-adjuvanting MUC1-macrophage activating lipopeptide 2 conjugate vaccine candidates. Chemical Communications, 2014, 50, 10273-10276.	4.1	44
61	Comparative <i>N</i> -Glycan Profiling of Colorectal Cancer Cell Lines Reveals Unique Bisecting GlcNAc and α-2,3-Linked Sialic Acid Determinants Are Associated with Membrane Proteins of the More Metastatic/Aggressive Cell Lines. Journal of Proteome Research, 2014, 13, 277-288.	3.7	97
62	Simple Capillary Electrophoresis–Mass Spectrometry Method for Complex Glycan Analysis Using a Flow-Through Microvial Interface. Analytical Chemistry, 2014, 86, 6479-6486.	6.5	50
63	Synthesis of homogeneous MUC1 oligomers via a bi-directional ligation strategy. Organic and Biomolecular Chemistry, 2013, 11, 6090.	2.8	8
64	Site-Specific Glycan-Peptide Analysis for Determination of <i>N</i> -Glycoproteome Heterogeneity. Journal of Proteome Research, 2013, 12, 5791-5800.	3.7	153
65	Structural analysis of glycoprotein sialylation – Part I: pre-LC-MS analytical strategies. RSC Advances, 2013, 3, 22683.	3.6	46
66	Structural analysis of glycoprotein sialylation – part II: LC-MS based detection. RSC Advances, 2013, 3, 22706.	3.6	81
67	2D gels still have a niche in proteomics. Journal of Proteomics, 2013, 88, 4-13.	2.4	154
68	Combined N-Glycome and N-Glycoproteome Analysis of the <i>Lotus japonicus</i> Seed Globulin Fraction Shows Conservation of Protein Structure and Glycosylation in Legumes. Journal of Proteome Research, 2013, 12, 3383-3392.	3.7	27
69	Quantitative mapping of glycoprotein microâ€heterogeneity and macroâ€heterogeneity: an evaluation of mass spectrometry signal strengths using synthetic peptides and glycopeptides. Journal of Mass Spectrometry, 2013, 48, 627-639.	1.6	130
70	Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Review of Respiratory Medicine, 2013, 7, 553-576.	2.5	44
71	Interlaboratory Study on Differential Analysis of Protein Glycosylation by Mass Spectrometry: The ABRF Glycoprotein Research Multi-Institutional Study 2012. Molecular and Cellular Proteomics, 2013, 12, 2935-2951.	3.8	103
72	Site-specific glycoproteomics confirms that protein structure dictates formation of N-glycan type, core fucosylation and branching. Glycobiology, 2012, 22, 1440-1452.	2.5	136

#	Article	IF	CITATIONS
73	Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology, 2012, 22, 1465-1479.	2.5	93
74	Micro―and macroheterogeneity of <i>N</i> â€glycosylation yields size and charge isoforms of human sex hormone binding globulin circulating in serum. Proteomics, 2012, 12, 3315-3327.	2.2	33
75	Total Synthesis of Homogeneous Antifreeze Glycopeptides and Glycoproteins. Angewandte Chemie - International Edition, 2012, 51, 3606-3610.	13.8	106
76	A Novel Post-translational Modification in Nerve Terminals: O-Linked <i>N</i> -Acetylglucosamine Phosphorylation. Journal of Proteome Research, 2011, 10, 2725-2733.	3.7	33
77	Salivary tissue inhibitor of metalloproteinases-1 localization and glycosylation profile analysis. Apmis, 2011, 119, 741-749.	2.0	6
78	Siteâ€specific characterisation of densely <i>O</i> â€glycosylated mucinâ€type peptides using electron transfer dissociation ESIâ€MS/MS. Electrophoresis, 2011, 32, 3536-3545.	2.4	41
79	The interactions of calreticulin with immunoglobulin G and immunoglobulin Y. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 889-899.	2.3	7
80	N-Glycans Modulate the Function of Human Corticosteroid-Binding Globulin. Molecular and Cellular Proteomics, 2011, 10, M111.009100.	3.8	65
81	Analysis of Protein Glycosylation and Phosphorylation Using HILIC-MS. Chromatographic Science, 2011, , 551-576.	0.1	5
82	Characterization of sialylated and fucosylated glycopeptides of β2â€glycoprotein I by a combination of HILIC LC and MALDI MS/MS. Journal of Separation Science, 2010, 33, 891-902.	2.5	23
83	Utilizing Ion-Pairing Hydrophilic Interaction Chromatography Solid Phase Extraction for Efficient Glycopeptide Enrichment in Glycoproteomics. Analytical Chemistry, 2010, 82, 5598-5609.	6.5	264
84	Biochemical characterization of bovine plasma thrombin-activatable fibrinolysis inhibitor (TAFI) BMC Biochemistry, 2009, 10, 13.	4.4	8
85	Site-Specific Glycoprofiling of N-Linked Glycopeptides Using MALDI-TOF MS: Strong Correlation between Signal Strength and Glycoform Quantities. Analytical Chemistry, 2009, 81, 3933-3943.	6.5	100
86	Interaction of the Chaperone Calreticulin with Proteins and Peptides of Different Structural Classes. Protein and Peptide Letters, 2009, 16, 1414-1423.	0.9	9
87	Investigating the biomarker potential of glycoproteins using comparative glycoprofiling — application to tissue inhibitor of metalloproteinases-1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 455-463.	2.3	30
88	Identifying sources and estimating glandular output of salivary TIMPâ€1. Scandinavian Journal of Clinical and Laboratory Investigation, 2008, 68, 548-554.	1.2	6
89	The Function of the Human Interferon-β1a Glycan Determined in Vivo. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 338-347.	2.5	37
90	Rapid and Individual-specific Glycoprofiling of the Low Abundance N-Glycosylated Protein Tissue Inhibitor of Metalloproteinases-1. Molecular and Cellular Proteomics, 2007, 6, 638-647.	3.8	52

#	Article	IF	CITATIONS
91	Investigation of the detoxification mechanism of formaldehyde-treated tetanus toxin. Vaccine, 2007, 25, 2213-2227.	3.8	92
92	Determination of protein conformation by isotopically labelled cross-linking and dedicated software: Application to the chaperone, calreticulin. International Journal of Mass Spectrometry, 2007, 268, 217-226.	1.5	16