Chang-Ming Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1594132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solution-based synthesis of wafer-scale epitaxial BiVO ₄ thin films exhibiting high structural and optoelectronic quality. Journal of Materials Chemistry A, 2022, 10, 12026-12034.	10.3	6
2	Indirect bandgap, optoelectronic properties, and photoelectrochemical characteristics of high-purity Ta ₃ N ₅ photoelectrodes. Journal of Materials Chemistry A, 2021, 9, 20653-20663.	10.3	11
3	CuBi ₂ O ₄ : Electronic Structure, Optical Properties, and Photoelectrochemical Performance Limitations of the Photocathode. Chemistry of Materials, 2021, 33, 934-945.	6.7	45
4	Metastable Ta ₂ N ₃ with highly tunable electrical conductivity <i>via</i> oxygen incorporation. Materials Horizons, 2021, 8, 1744-1755.	12.2	6
5	Nanoscale Heterogeneities and Composition–Reactivity Relationships in Copper Vanadate Photoanodes. ACS Applied Materials & Interfaces, 2021, 13, 23575-23583.	8.0	1
6	Aluminum Oxide at the Monolayer Limit via Oxidantâ€Free Plasmaâ€Assisted Atomic Layer Deposition on GaN. Advanced Functional Materials, 2021, 31, 2101441.	14.9	17
7	Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nature Catalysis, 2020, 3, 932-940.	34.4	211
8	ldentifying Performance-Limiting Deep Traps in Ta ₃ N ₅ for Solar Water Splitting. ACS Catalysis, 2020, 10, 10316-10324.	11.2	68
9	Control of Band Gap and Band Edge Positions in Gallium–Zinc Oxynitride Grown by Molecular Beam Epitaxy. Journal of Physical Chemistry C, 2020, 124, 7668-7676.	3.1	4
10	Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO ₄ overlayers. Sustainable Energy and Fuels, 2019, 3, 127-135.	4.9	28
11	Electronic Structure and Performance Bottlenecks of CuFeO ₂ Photocathodes. Chemistry of Materials, 2019, 31, 2524-2534.	6.7	43
12	Composition-Dependent Functionality of Copper Vanadate Photoanodes. ACS Applied Materials & Interfaces, 2018, 10, 10627-10633.	8.0	65
13	Quantification of the loss mechanisms in emerging water splitting photoanodes through empirical extraction of the spatial charge collection efficiency. Energy and Environmental Science, 2018, 11, 904-913.	30.8	24
14	Physical Origins of the Transient Absorption Spectra and Dynamics in Thin-Film Semiconductors: The Case of BiVO ₄ . Journal of Physical Chemistry C, 2018, 122, 20642-20652.	3.1	53
15	Probing interfacial energetics and charge transfer kinetics in semiconductor nanocomposites: New insights into heterostructured TiO2/BiVO4 photoanodes. Nano Energy, 2017, 34, 375-384.	16.0	36
16	Electronic Structure, Optoelectronic Properties, and Photoelectrochemical Characteristics of γ-Cu ₃ V ₂ O ₈ Thin Films. Chemistry of Materials, 2017, 29, 3334-3345.	6.7	60
17	Structurally Deformed MoS ₂ for Electrochemically Stable, Thermally Resistant, and Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1703863.	21.0	107
18	<i>Operando</i> Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7448-7455.	13.7	330

CHANG-MING JIANG

#	Article	IF	CITATIONS
19	Characterization of Photo-Induced Charge Transfer and Hot Carrier Relaxation Pathways in Spinel Cobalt Oxide (Co ₃ O ₄). Journal of Physical Chemistry C, 2014, 118, 22774-22784.	3.1	78
20	Charge Carrier Dynamics of Photoexcited Co ₃ O ₄ in Methanol: Extending High Harmonic Transient Absorption Spectroscopy to Liquid Environments. Nano Letters, 2014, 14, 5883-5890.	9.1	37
21	Femtosecond M _{2,3} -Edge Spectroscopy of Transition-Metal Oxides: Photoinduced Oxidation State Change in α-Fe ₂ O ₃ . Journal of Physical Chemistry Letters, 2013, 4, 3667-3671.	4.6	110
22	Recent Experimental Advances on Excited-State Intramolecular Proton Coupled Electron Transfer Reaction. Accounts of Chemical Research, 2010, 43, 1364-1374.	15.6	321
23	Cyano Analogues of 7â€Azaindole: Probing Excitedâ€State Chargeâ€Coupled Proton Transfer Reactions in Protic Solvents. ChemPhysChem, 2008, 9, 2221-2229.	2.1	11
24	Emissive Pt(ii) complexes bearing both cyclometalated ligand and 2-pyridyl hexafluoropropoxide ancillary chelate. Dalton Transactions, 2008, , 6901.	3.3	54
25	Blue-Emitting Platinum(II) Complexes Bearing both Pyridylpyrazolate Chelate and Bridging Pyrazolate Ligands:  Synthesis, Structures, and Photophysical Properties. Inorganic Chemistry, 2007, 46, 11202-11212.	4.0	107
26	Novel Oxazabicycles as a New Class of Photochromic Colorants. Organic Letters, 2007, 9, 5287-5290.	4.6	22
27	High-purity Ta3N5 Photoelectrodes for Photoelectrochemical Energy Conversion. , 0, , .		0