Ming Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1593574/publications.pdf

Version: 2024-02-01

		159525	175177
63	2,818	30	52
papers	citations	h-index	g-index
66	66	66	4128
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanoplatform Selfâ€Assembly from Small Molecules of Porphyrin Derivatives for NIRâ€II Fluorescence Imaging Guided Photothermalâ€Immunotherapy. Advanced Healthcare Materials, 2022, 11, e2102526.	3.9	18
2	Red Blood Cell-Mimic Nanocatalyst Triggering Radical Storm to Augment Cancer Immunotherapy. Nano-Micro Letters, 2022, 14, 57.	14.4	24
3	Tumor Microenvironment-Responsive Yolk–Shell NaCl@Virus-Inspired Tetrasulfide-Organosilica for Ion-Interference Therapy <i>via</i> Osmolarity Surge and Oxidative Stress Amplification. ACS Nano, 2022, 16, 7380-7397.	7. 3	25
4	Biosynthetic cell membrane vesicles to enhance TRAIL-mediated apoptosis driven by photo-triggered oxidative stress. Biomaterials Science, 2022, 10, 3547-3558.	2.6	3
5	Vehicle-Free Nanotheranostic Self-Assembled from Clinically Approved Dyes for Cancer Fluorescence Imaging and Photothermal/Photodynamic Combinational Therapy. Pharmaceutics, 2022, 14, 1074.	2.0	6
6	Doxifluridine-based pharmacosomes delivering miR-122 as tumor microenvironments-activated nanoplatforms for synergistic treatment of hepatocellular carcinoma. Colloids and Surfaces B: Biointerfaces, 2021, 197, 111367.	2.5	8
7	A remotely controlled NIR-II photothermal-sensitive transgene system for hepatocellular carcinoma synergistic therapy. Journal of Materials Chemistry B, 2021, 9, 5083-5091.	2.9	13
8	Localized NIR-II photo-immunotherapy through the combination of photothermal ablation and <i>in situ</i> generated interleukin-12 cytokine for efficiently eliminating primary and abscopal tumors. Nanoscale, 2021, 13, 1745-1758.	2.8	32
9	Enhancing therapeutic effects and <i>in vivo</i> tracking of adipose tissue-derived mesenchymal stem cells for liver injury using bioorthogonal click chemistry. Nanoscale, 2021, 13, 1813-1822.	2.8	13
10	A highly stable multifunctional aptamer for enhancing antitumor immunity against hepatocellular carcinoma by blocking dual immune checkpoints. Biomaterials Science, 2021, 9, 4159-4168.	2.6	18
11	Tumor Microenvironment Triggered Cascadeâ€Activation Nanoplatform for Synergistic and Precise Treatment of Hepatocellular Carcinoma. Advanced Healthcare Materials, 2021, 10, e2002036.	3.9	14
12	Protocol to prepare functional cellular nanovesicles with PD1 and TRAIL to boost antitumor response. STAR Protocols, 2021, 2, 100324.	0.5	3
13	Hypoxia-responsive nanoreactors based on self-enhanced photodynamic sensitization and triggered ferroptosis for cancer synergistic therapy. Journal of Nanobiotechnology, 2021, 19, 204.	4.2	36
14	In Vivo Tracking of Cell Viability for Adoptive Natural Killer Cellâ€Based Immunotherapy by Ratiometric NIRâ€II Fluorescence Imaging. Angewandte Chemie, 2021, 133, 21056-21064.	1.6	10
15	In Vivo Tracking of Cell Viability for Adoptive Natural Killer Cellâ€Based Immunotherapy by Ratiometric NIRâ€I Fluorescence Imaging. Angewandte Chemie - International Edition, 2021, 60, 20888-20896.	7.2	48
16	Engineered Red Blood Cell Biomimetic Nanovesicle with Oxygen Self-Supply for Near-Infrared-II Fluorescence-Guided Synergetic Chemo-Photodynamic Therapy against Hypoxic Tumors. ACS Applied Materials & Dy Interfaces, 2021, 13, 52435-52449.	4.0	34
17	Multifunctional theranostic nanosystems enabling photothermal-chemo combination therapy of triple-stimuli-responsive drug release with magnetic resonance imaging. Biomaterials Science, 2020, 8, 1875-1884.	2.6	16
18	Donor–acceptor conjugated polymer-based nanoparticles for highly effective photoacoustic imaging and photothermal therapy in the NIR-II window. Chemical Communications, 2020, 56, 1093-1096.	2.2	63

#	Article	IF	CITATIONS
19	Facile phase transfer of hydrophobic Fe ₃ O ₄ @Cu _{2â^'x} S nanoparticles by red blood cell membrane for MRI and phototherapy in the second near-infrared window. Journal of Materials Chemistry B, 2020, 8, 1202-1211.	2.9	29
20	Photodynamic Therapy Combined with Antihypoxic Signaling and CpG Adjuvant as an In Situ Tumor Vaccine Based on Metal–Organic Framework Nanoparticles to Boost Cancer Immunotherapy. Advanced Healthcare Materials, 2020, 9, e1900996.	3.9	117
21	Multifunctional theranostic agents based on prussian blue nanoparticles for tumor targeted and MRIâ€"guided photodynamic/photothermal combined treatment. Nanotechnology, 2020, 31, 135101.	1.3	18
22	Self-assembly of methylene violet-conjugated perylene diimide with photodynamic/photothermal properties for DNA photocleavage and cancer treatment. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111351.	2.5	22
23	Cancer Cell-Targeted Photosensitizer and Therapeutic Protein Co-Delivery Nanoplatform Based on a Metal–Organic Framework for Enhanced Synergistic Photodynamic and Protein Therapy. ACS Applied Materials & Interfaces, 2020, 12, 36906-36916.	4.0	58
24	X-ray-Induced Cherenkov Optical Triggering of Caged Doxorubicin Released to the Nucleus for Chemoradiation Activation. ACS Applied Materials & Interfaces, 2020, 12, 44383-44392.	4.0	10
25	A thieno-isoindigo derivative-based conjugated polymer nanoparticle for photothermal therapy in the NIR-II bio-window. Nanoscale, 2020, 12, 19665-19672.	2.8	34
26	Converting Immune Cold into Hot by Biosynthetic Functional Vesicles to Boost Systematic Antitumor Immunity. IScience, 2020, 23, 101341.	1.9	34
27	RBC Membrane Camouflaged Semiconducting Polymer Nanoparticles for Near-Infrared Photoacoustic Imaging and Photothermal Therapy. Nano-Micro Letters, 2020, 12, 94.	14.4	60
28	Water-soluble organic probe for pH sensing and imaging. Talanta, 2019, 205, 120095.	2.9	23
29	Vehicle-saving theranostic probes based on hydrophobic iron oxide nanoclusters using doxorubicin as a phase transfer agent for MRI and chemotherapy. Chemical Communications, 2019, 55, 9015-9018.	2.2	7
30	Folic acid-modified Prussian blue/polydopamine nanoparticles as an MRI agent for use in targeted chemo/photothermal therapy. Biomaterials Science, 2019, 7, 2996-3006.	2.6	59
31	Programmable Therapeutic Nanodevices with Circular Amplification of H ₂ O ₂ in the Tumor Microenvironment for Synergistic Cancer Therapy. Advanced Healthcare Materials, 2019, 8, e1801627.	3.9	27
32	Self-Luminescing Theranostic Nanoreactors with Intraparticle Relayed Energy Transfer for Tumor Microenvironment Activated Imaging and Photodynamic Therapy. Theranostics, 2019, 9, 20-33.	4.6	53
33	Gadolinium-doped hollow CeO ₂ -ZrO ₂ nanoplatform as multifunctional MRI/CT dual-modal imaging agent and drug delivery vehicle. Drug Delivery, 2018, 25, 353-363.	2.5	14
34	Chemotherapeutic Drug Based Metal–Organic Particles for Microvesicleâ€Mediated Deep Penetration and Programmable pH/NIR/Hypoxia Activated Cancer Photochemotherapy. Advanced Science, 2018, 5, 1700648.	5 . 6	60
35	Reduction/photo dual-responsive polymeric prodrug nanoparticles for programmed siRNA and doxorubicin delivery. Biomaterials Science, 2018, 6, 1457-1468.	2.6	51
36	Semiconducting polymer-based nanoparticles for photothermal therapy at the second near-infrared window. Chemical Communications, 2018, 54, 13599-13602.	2.2	47

#	Article	IF	Citations
37	Facile preparation of biocompatible Ti ₂ O ₃ nanoparticles for second near-infrared window photothermal therapy. Journal of Materials Chemistry B, 2018, 6, 7889-7897.	2.9	25
38	Photoresponsive Nanovehicle for Two Independent Wavelength Light-Triggered Sequential Release of P-gp shRNA and Doxorubicin To Optimize and Enhance Synergistic Therapy of Multidrug-Resistant Cancer. ACS Applied Materials & Diterfaces, 2018, 10, 19416-19427.	4.0	67
39	Photo-responsive hollow silica nanoparticles for light-triggered genetic and photodynamic synergistic therapy. Acta Biomaterialia, 2018, 76, 178-192.	4.1	30
40	pH/hypoxia programmable triggered cancer photo-chemotherapy based on a semiconducting polymer dot hybridized mesoporous silica framework. Chemical Science, 2018, 9, 7390-7399.	3.7	59
41	Self-Quenched Metal–Organic Particles as Dual-Mode Therapeutic Agents for Photoacoustic Imaging-Guided Second Near-Infrared Window Photochemotherapy. ACS Applied Materials & Interfaces, 2018, 10, 25203-25212.	4.0	63
42	Cancer cell membrane-coated magnetic nanoparticles for MR/NIR fluorescence dual-modal imaging and photodynamic therapy. Biomaterials Science, 2018, 6, 1834-1845.	2.6	88
43	Cationic nanomicelles derived from Pluronic F127 as delivery vehicles of Chinese herbal medicine active components of ursolic acid for colorectal cancer treatment. RSC Advances, 2018, 8, 15906-15914.	1.7	12
44	Light-Enhanced Hypoxia-Response of Conjugated Polymer Nanocarrier for Successive Synergistic Photodynamic and Chemo-Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21909-21919.	4.0	73
45	Tumor Microenvironment Activable Selfâ€Assembled DNA Hybrids for pH and Redox Dualâ€Responsive Chemotherapy/PDT Treatment of Hepatocellular Carcinoma. Advanced Science, 2017, 4, 1600460.	5.6	56
46	Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release. Nanotechnology, 2017, 28, 255101.	1.3	27
47	Magnetite nanocluster and paclitaxel-loaded charge-switchable nanohybrids for MR imaging and chemotherapy. Journal of Materials Chemistry B, 2017, 5, 849-857.	2.9	18
48	Glutathione responsive micelles incorporated with semiconducting polymer dots and doxorubicin for cancer photothermal-chemotherapy. Nanotechnology, 2017, 28, 425102.	1.3	12
49	Smart Cu(II)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma. Theranostics, 2017, 7, 164-179.	4.6	69
50	A highly stable and biocompatible optical bioimaging nanoprobe based on carbon nanospheres. RSC Advances, 2016, 6, 37472-37477.	1.7	3
51	SPION@Cu _{2â^'x} S nanoclusters for highly sensitive MRI and targeted photothermal therapy of hepatocellular carcinoma. Journal of Materials Chemistry B, 2016, 4, 4119-4129.	2.9	18
52	Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking and targeted delivery of adipose tissue-derived stem cells. Scientific Reports, 2016, 6, 18746.	1.6	39
53	Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer. Journal of Materials Chemistry B, 2016, 4, 589-599.	2.9	75
54	Magnetite nanocluster@poly(dopamine)-PEG@ indocyanine green nanobead with magnetic field-targeting enhanced MR imaging and photothermal therapy in vivo. Colloids and Surfaces B: Biointerfaces, 2016, 141, 467-475.	2.5	52

#	Article	IF	CITATIONS
55	Nanoclusters of superparamagnetic iron oxide nanoparticles coated with poly(dopamine) for magnetic field-directed, ultrasensitive MRI-guided photothermal cancer therapy. Journal of Controlled Release, 2015, 213, e78.	4.8	6
56	Highly efficient loading of doxorubicin in Prussian Blue nanocages for combined photothermal/chemotherapy against hepatocellular carcinoma. RSC Advances, 2015, 5, 30970-30980.	1.7	41
57	Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology, 2015, 26, 115102.	1.3	136
58	Chlorin e6 Conjugated Poly(dopamine) Nanospheres as PDT/PTT Dual-Modal Therapeutic Agents for Enhanced Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8176-8187.	4.0	311
59	Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment. Nanotechnology, 2015, 26, 025102.	1.3	54
60	Glypican-3 antibody functionalized Prussian blue nanoparticles for targeted MR imaging and photothermal therapy of hepatocellular carcinoma. Journal of Materials Chemistry B, 2014, 2, 3686-3696.	2.9	67
61	Lipid-AuNPs@PDA Nanohybrid for MRI/CT Imaging and Photothermal Therapy of Hepatocellular Carcinoma. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14266-14277.	4.0	151
62	Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles. Biomaterials, 2013, 34, 3858-3869.	5.7	158
63	Biomimetic Nanocatalysts Enhance Oxidative Damage against Cancer Cells. Materials Science Forum, 0, 1058, 15-19.	0.3	0