
John G Oakeshott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phylogenomic analyses of the genus <i>Drosophila</i> reveals genomic signals of climate adaptation. Molecular Ecology Resources, 2022, 22, 1559-1581.	4.8	15
2	Insecticide resistance in field populations of the pear psyllids <i>Cacopsylla permixta</i> and <i>Cacopsylla bidens</i> in Iran. Physiological Entomology, 2022, 47, 73-82.	1.5	3
3	Population differences and domestication effects on mating and remating frequencies in Queensland fruit fly. Scientific Reports, 2022, 12, 153.	3.3	2
4	Tracing the origins of recent Queensland fruit fly incursions into South Australia, Tasmania and New Zealand. Biological Invasions, 2021, 23, 1117-1130.	2.4	8
5	Cuticular Chemistry of the Queensland Fruit Fly Bactrocera tryoni (Froggatt). Molecules, 2020, 25, 4185.	3.8	8
6	Genome-wide patterns of differentiation over space and time in the Queensland fruit fly. Scientific Reports, 2020, 10, 10788.	3.3	16
7	Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication. BMC Genetics, 2020, 21, 135.	2.7	11
8	A breakthrough in understanding the molecular basis of coral heat tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28546-28548.	7.1	6
9	Oxidative Catabolism of (+)-Pinoresinol Is Initiated by an Unusual Flavocytochrome Encoded by Translationally Coupled Genes within a Cluster of (+)-Pinoresinol-Coinduced Genes in <i>Pseudomonas</i> sp. Strain SG-MS2. Applied and Environmental Microbiology, 2020, 86, .	3.1	7
10	Cellular and Structural Basis of Synthesis of the Unique Intermediate Dehydro-F ₄₂₀ -0 in Mycobacteria. MSystems, 2020, 5, .	3.8	9
11	Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genomics, 2019, 20, 52.	2.8	22
12	Editorial overview: Revisiting Dobzhansky and the â€~modern synthesis' in light of insect evolutionary genomics. Current Opinion in Insect Science, 2019, 31, iii-vi.	4.4	1
13	Detoxification Genes Differ Between Cactus-, Fruit-, and Flower-Feeding <i>Drosophila</i> . Journal of Heredity, 2019, 110, 80-91.	2.4	17
14	Detoxifying enzyme complements and host use phenotypes in 160 insect species. Current Opinion in Insect Science, 2019, 31, 131-138.	4.4	75
15	The molecular basis for the neofunctionalization of the juvenile hormone esterase duplication in Drosophila. Insect Biochemistry and Molecular Biology, 2019, 106, 10-18.	2.7	7
16	Biochemical Genetics and Genomics of Insect Esterases. , 2019, , .		3
17	Seedâ€specific RNAi in safflower generates a superhigh oleic oil with extended oxidative stability. Plant Biotechnology Journal, 2018, 16, 1788-1796.	8.3	40
18	Hybridization and gene flow in the mega-pest lineage of moth, <i>Helicoverpa</i> . Proceedings of the United States of America, 2018, 115, 5034-5039	7.1	113

#	Article	IF	CITATIONS
19	Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its Catabolic Pathway. Applied and Environmental Microbiology, 2018, 84, .	3.1	15
20	Hyperthermophilic Carbamate Kinase Stability and Anabolic <i>In Vitro</i> Activity at Alkaline pH. Applied and Environmental Microbiology, 2018, 84, .	3.1	9
21	Molecular basis for the behavioral effects of the odorant degrading enzyme Esterase 6 in Drosophila. Scientific Reports, 2017, 7, 46188.	3.3	40
22	Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 2017, 7, 11816.	3.3	242
23	Structure of an Insecticide Sequestering Carboxylesterase from the Disease Vector <i>Culex quinquefasciatus:</i> What Makes an Enzyme a Good Insecticide Sponge?. Biochemistry, 2017, 56, 5512-5525.	2.5	24
24	The methanogenic redox cofactor F420 is widely synthesized by aerobic soil bacteria. ISME Journal, 2017, 11, 125-137.	9.8	66
25	Mycobacterial F420H2-Dependent Reductases Promiscuously Reduce Diverse Compounds through a Common Mechanism. Frontiers in Microbiology, 2017, 8, 1000.	3.5	27
26	Cofactor Tail Length Modulates Catalysis of Bacterial F420-Dependent Oxidoreductases. Frontiers in Microbiology, 2017, 8, 1902.	3.5	15
27	Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biology, 2017, 15, 63.	3.8	238
28	Orthonome – a new pipeline for predicting high quality orthologue gene sets applicable to complete and draft genomes. BMC Genomics, 2017, 18, 673.	2.8	11
29	Physiology, Biochemistry, and Applications of F ₄₂₀ - and F _o -Dependent Redox Reactions. Microbiology and Molecular Biology Reviews, 2016, 80, 451-493.	6.6	136
30	Multifaceted biological insights from a draft genome sequence of the tobacco hornworm moth, Manduca sexta. Insect Biochemistry and Molecular Biology, 2016, 76, 118-147.	2.7	154
31	The Redox Cofactor F 420 Protects Mycobacteria from Diverse Antimicrobial Compounds and Mediates a Reductive Detoxification System. Applied and Environmental Microbiology, 2016, 82, 6810-6818.	3.1	35
32	Evolution of Protein Quaternary Structure in Response to Selective Pressure for Increased Thermostability. Journal of Molecular Biology, 2016, 428, 2359-2371.	4.2	40
33	Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores?. Current Opinion in Insect Science, 2016, 13, 70-76.	4.4	80
34	Phylogenetic and Kinetic Characterization of a Suite of Dehydrogenases from a Newly Isolated Bacterium, Strain SG61-1L, That Catalyze the Turnover of Guaiacylglycerol-Î ² -Guaiacyl Ether Stereoisomers. Applied and Environmental Microbiology, 2015, 81, 8164-8176.	3.1	20
35	An antennal carboxylesterase from Drosophila melanogaster, esterase 6, is a candidate odorant-degrading enzyme toward food odorants. Frontiers in Physiology, 2015, 6, 315.	2.8	57
36	Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Molecular Ecology, 2015, 24, 4901-4911.	3.9	65

#	Article	IF	CITATIONS
37	Tracking invasion and invasiveness in Queensland fruit flies: From classical genetics to â€~omics'. Environmental Epigenetics, 2015, 61, 477-487.	1.8	13
38	Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains. G3: Genes, Genomes, Genetics, 2015, 5, 1081-1094.	1.8	27
39	Atmospheric Hydrogen Scavenging: from Enzymes to Ecosystems. Applied and Environmental Microbiology, 2015, 81, 1190-1199.	3.1	81
40	Evolutionary Expansion of the Amidohydrolase Superfamily in Bacteria in Response to the Synthetic Compounds Molinate and Diuron. Applied and Environmental Microbiology, 2015, 81, 2612-2624.	3.1	27
41	Variation in P450-mediated fenvalerate resistance levels is not correlated with CYP337B3 genotype in Chinese populations of Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2015, 121, 129-135.	3.6	28
42	lsomer-specific comparisons of the hydrolysis of synthetic pyrethroids and their fluorogenic analogues by esterases from the cotton bollworm Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2015, 121, 102-106.	3.6	6
43	High nucleotide diversity and limited linkage disequilibrium in Helicoverpa armigera facilitates the detection of a selective sweep. Heredity, 2015, 115, 460-470.	2.6	15
44	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	8.8	330
45	A point mutation in the acetylcholinesterase-1 gene is associated with chlorpyrifos resistance in the plant bug Apolygus lucorum. Insect Biochemistry and Molecular Biology, 2015, 65, 75-82.	2.7	24
46	Biological invasions, climate change and genomics. Evolutionary Applications, 2015, 8, 23-46.	3.1	209
47	Ongoing functional evolution of the bacterial atrazine chlorohydrolase AtzA. Biodegradation, 2014, 25, 21-30.	3.0	17
48	Functional screening of enzymes and bacteria for the dechlorination of hexachlorocyclohexane by a high-throughput colorimetric assay. Biodegradation, 2014, 25, 179-187.	3.0	13
49	Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 2014, 53, 30-43.	2.7	124
50	300-Fold Increase in Production of the Zn2+-Dependent Dechlorinase TrzN in Soluble Form via Apoenzyme Stabilization. Applied and Environmental Microbiology, 2014, 80, 4003-4011.	3.1	14
51	Problems with data quality in the reconstruction of evolutionary relationships in the Drosophila melanogaster species group: Comments on Yang et al. (2012). Molecular Phylogenetics and Evolution, 2014, 78, 275-276.	2.7	5
52	Enzyme Assay in Microfluidics. , 2014, , 1-8.		1
53	Kinetic and Sequence-Structure-Function Analysis of LinB Enzyme Variants with β- and δ-Hexachlorocyclohexane. PLoS ONE, 2014, 9, e103632.	2.5	4
54	In Situ Deprotection and Incorporation of Unnatural Amino Acids during Cellâ€Free Protein Synthesis. Chemistry - A European Journal, 2013, 19, 6824-6830.	3.3	12

#	Article	IF	CITATIONS
55	Structure and function of an insect α-carboxylesterase (α <i>Esterase</i> 7) associated with insecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10177-10182.	7.1	112
56	Soluble and membrane-bound Drosophila melanogaster CYP6G1 expressed in Escherichia coli: Purification, activity, and binding properties toward multiple pesticides. Insect Biochemistry and Molecular Biology, 2013, 43, 455-465.	2.7	36
57	Draft Genome Sequence of <i>Ralstonia</i> sp. Strain GA3-3, Isolated from Australian Suburban Soil. Genome Announcements, 2013, 1, .	0.8	1
58	Draft Genome Sequence of Pandoraea sp. Strain SD6-2, Isolated from Lindane-Contaminated Australian Soil. Genome Announcements, 2013, 1, .	0.8	10
59	Integrated microdroplet-based system for enzyme synthesis and sampling. , 2013, , .		0
60	How to fabricate robust microfluidic systems for a dollar. Proceedings of SPIE, 2013, , .	0.8	0
61	How many genetic options for evolving insecticide resistance in heliothine and spodopteran pests?. Pest Management Science, 2013, 69, 889-896.	3.4	42
62	Heterologous Expression and Biochemical Characterisation of Fourteen Esterases from Helicoverpa armigera. PLoS ONE, 2013, 8, e65951.	2.5	22
63	Organophosphate and Pyrethroid Hydrolase Activities of Mutant Esterases from the Cotton Bollworm Helicoverpa armigera. PLoS ONE, 2013, 8, e77685.	2.5	22
64	Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides. Insect Biochemistry and Molecular Biology, 2012, 42, 343-352.	2.7	39
65	Chemotaxis of Burkholderia sp. Strain SJ98 towards chloronitroaromatic compounds that it can metabolise. BMC Microbiology, 2012, 12, 19.	3.3	38
66	Proteomic and molecular analyses of esterases associated with monocrotophos resistance in Helicoverpa armigera. Pesticide Biochemistry and Physiology, 2012, 104, 243-251.	3.6	30
67	Cofactor promiscuity among F420-dependent reductases enables them to catalyse both oxidation and reduction of the same substrate. Catalysis Science and Technology, 2012, 2, 1560.	4.1	18
68	Cloning of a Novel 6-Chloronicotinic Acid Chlorohydrolase from the Newly Isolated 6-Chloronicotinic Acid Mineralizing Bradyrhizobiaceae Strain SG-6C. PLoS ONE, 2012, 7, e51162.	2.5	19
69	F420H2-Dependent Degradation of Aflatoxin and other Furanocoumarins Is Widespread throughout the Actinomycetales. PLoS ONE, 2012, 7, e30114.	2.5	53
70	Intramolecular Epistasis and the Evolution of a New Enzymatic Function. PLoS ONE, 2012, 7, e39822.	2.5	49
71	Bacterial degradation of strobilurin fungicides: a role for a promiscuous methyl esterase activity of the subtilisin proteases?. Biocatalysis and Biotransformation, 2011, 29, 119-129.	2.0	25
72	Competing S _N 2 and E2 reaction pathways for hexachlorocyclohexane degradation in the gas phase, solution and enzymes. Chemical Communications, 2011, 47, 976-978.	4.1	18

#	Article	IF	CITATIONS
73	A double-emulsion microfluidic platform for <i>in vitro</i> green fluorescent protein expression. Journal of Micromechanics and Microengineering, 2011, 21, 054032.	2.6	15
74	Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2011, 41, 14-21.	2.7	88
75	Free-Enzyme Bioremediation of Pesticides. ACS Symposium Series, 2011, , 155-174.	0.5	21
76	Evolutionary principles and their practical application. Evolutionary Applications, 2011, 4, 159-183.	3.1	230
77	The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticideâ€resistant insects. Evolutionary Applications, 2011, 4, 225-248.	3.1	113
78	Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agroâ€ecosystems. Evolutionary Applications, 2011, 4, 200-215.	3.1	177
79	Improving a Natural Enzyme Activity through Incorporation of Unnatural Amino Acids. Journal of the American Chemical Society, 2011, 133, 326-333.	13.7	77
80	Enzyme synthesis and activity assay in microfluidic droplets on a chip. Engineering in Life Sciences, 2011, 11, 157-164.	3.6	19
81	Biochemical characterisation of MdCXE1, a carboxylesterase from apple that is expressed during fruit ripening. Phytochemistry, 2011, 72, 564-571.	2.9	28
82	Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21. Microbiology (United Kingdom), 2011, 157, 721-726.	1.8	47
83	Genome Sequence of the Newly Isolated Chemolithoautotrophic Bradyrhizobiaceae Strain SG-6C. Journal of Bacteriology, 2011, 193, 5057-5057.	2.2	8
84	Using a Genetically Encoded Fluorescent Amino Acid as a Site-Specific Probe to Detect Binding of Low-Molecular-Weight Compounds. Assay and Drug Development Technologies, 2011, 9, 50-57.	1.2	18
85	Kinetic and Sequence-Structure-Function Analysis of Known LinA Variants with Different Hexachlorocyclohexane Isomers. PLoS ONE, 2011, 6, e25128.	2.5	14
86	Microfluidic Droplet Technique for In Vitro Directed Evolution. Australian Journal of Chemistry, 2010, 63, 1313.	0.9	6
87	Management of the diffusion of 4â€methylumbelliferone across phases in microdropletâ€based systems for in vitro protein evolution. Electrophoresis, 2010, 31, 3121-3128.	2.4	21
88	A free-enzyme catalyst for the bioremediation of environmental atrazine contamination. Journal of Environmental Management, 2010, 91, 2075-2078.	7.8	42
89	Metabolic enzymes associated with xenobiotic and chemosensory responses in <i>Nasonia vitripennis</i> . Insect Molecular Biology, 2010, 19, 147-163.	2.0	172
90	Identification and characterization of two families of F ₄₂₀ H ₂ â€dependent reductases from <i>Mycobacteria</i> that catalyse aflatoxin degradation. Molecular Microbiology, 2010, 78, 561-575.	2.5	132

John G Oakeshott

#	Article	IF	CITATIONS
91	Cloning and Biochemical Characterization of a Novel Carbendazim (Methyl-1 <i>H</i>) Tj ETQq1 1 0.784314 rgBT Strain SG-4G and Its Potential for Use in Enzymatic Bioremediation. Applied and Environmental	Overlock 3.1	10 Tf 50 7 45
	Microbiology, 2010, 76, 2940-2945.		
92	Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation. Microbiology and Molecular Biology Reviews, 2010, 74, 58-80.	6.6	331
	Esterase-based metabolic resistance to insecticides in heliothine and spodopteran pests. Journal of		
93	Pesticide Sciences, 2010, 35, 275-289.	1.4	51
94	Sensory Regulation of Neuroligins and Neurexin I in the Honeybee Brain. PLoS ONE, 2010, 5, e9133.	2.5	66
95	Gene identification and proteomic analysis of the esterases of the cotton bollworm, Helicoverpa armigera. Insect Biochemistry and Molecular Biology, 2010, 40, 1-16.	2.7	71
	Functional and Evolutionary Insights from the Genomes of Three Parasitoid <i>Nasonia</i> Species.		
96	Science, 2010, 327, 343-348.	12.6	808
97	Catalytic Improvement and Evolution of Atrazine Chlorohydrolase. Applied and Environmental	3.1	57
	Microbiology, 2009, 75, 2184-2191.		
98	Structure-Based Rational Design of a Phosphotriesterase. Applied and Environmental Microbiology, 2009, 75, 5153-5156.	3.1	35
	Birth and Death of Genes and Functions in the β-Esterase Cluster of Drosophila. Journal of Molecular		
99	Evolution, 2009, 69, 10-21.	1.8	22
100	Heterologous expression of the methyl carbamate-degrading hydrolase MCD. Journal of Biotechnology, 2009, 144, 89-95.	3.8	21
	blotechhology, 2007, 147, 87-93.		
101	Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochemical and Biophysical Research Communications, 2009, 380, 710-714.	2.1	144
	Comparative and functional genomics of lipases in holometabolous insects. Insect Biochemistry and		
102	Molecular Biology, 2009, 39, 547-567.	2.7	101
103	A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract. Lab on A Chip, 2009, 9, 3391.	6.0	59
	Lao on A Chip, 2009, 9, 5591.		
104	Characterization of the phenylurea hydrolases A and B: founding members of a novel amidohydrolase subgroup. Biochemical Journal, 2009, 418, 431-441.	3.7	54
105	The enzymatic basis for pesticide bioremediation. Indian Journal of Microbiology, 2008, 48, 65-79.	2.7	144
106	Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian	2.7	137
	Journal of Microbiology, 2008, 48, 95-113.		
107	Cloning, expression, purification, crystallization and preliminary X-ray studies of a pyridoxine 5′-phosphate oxidase fromMycobacterium smegmatis. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 435-437.	0.7	2
108	OpdA, a bacterial organophosphorus hydrolase, prevents lethality in rats after poisoning with highly toxic organophosphorus pesticides. Toxicology, 2008, 247, 88-92.	4.2	73

#	Article	IF	CITATIONS
109	Bridging the Synaptic Gap: Neuroligins and Neurexin I in Apis mellifera. PLoS ONE, 2008, 3, e3542.	2.5	56
110	Only one esterase of Drosophila melanogaster is likely to degrade juvenile hormone in vivo. Insect Biochemistry and Molecular Biology, 2007, 37, 540-549.	2.7	35
111	Hydrolysis of individual isomers of fluorogenic pyrethroid analogs by mutant carboxylesterases from Lucilia cuprina. Insect Biochemistry and Molecular Biology, 2007, 37, 891-902.	2.7	28
112	Jhe in Gryllus assimilis: Cloning, sequence-activity associations and phylogeny. Insect Biochemistry and Molecular Biology, 2007, 37, 1359-1365.	2.7	22
113	High-Resolution Crystal Structure of Plant Carboxylesterase AeCXE1, from Actinidia eriantha, and Its Complex with a High-Affinity Inhibitor Paraoxon,. Biochemistry, 2007, 46, 1851-1859.	2.5	58
114	A global response to sulfur starvation inPseudomonas putidaand its relationship to the expression of low-sulfur-content proteins. FEMS Microbiology Letters, 2007, 267, 184-193.	1.8	23
115	Carbamate Pesticides and Their Biological Degradation: Prospects for Enzymatic Bioremediation. ACS Symposium Series, 2007, , 288-305.	0.5	4
116	Molecular Population Genetics of the α-Esterase5 Gene Locus in Original and Colonized Populations of Drosophila buzzatii and Its Sibling Drosophila koepferae. Journal of Molecular Evolution, 2007, 64, 158-170.	1.8	18
117	Latitudinal clines for nucleotide polymorphisms in the Esterase 6 gene of Drosophila melanogaster. Genetica, 2007, 129, 259-271.	1.1	3
118	Functional effects of amino acid substitutions within the large binding pocket of the phosphotriesterase OpdA fromAgrobacteriumsp. P230. FEMS Microbiology Letters, 2006, 259, 187-194.	1.8	17
119	A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 2006, 15, 615-636.	2.0	599
120	Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443, 931-949.	27.8	1,648
121	Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8757-8762.	7.1	149
122	A Single Monooxygenase, Ese, Is Involved in the Metabolism of the Organochlorides Endosulfan and Endosulfate in an Arthrobacter sp. Applied and Environmental Microbiology, 2006, 72, 3524-3530.	3.1	113
123	Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases. Chemico-Biological Interactions, 2005, 157-158, 269-275.	4.0	81
124	Multiple Mutations and Gene Duplications Conferring Organophosphorus Insecticide Resistance Have Been Selected at the Rop-1 Locus of the Sheep Blowfly, Lucilia cuprina. Journal of Molecular Evolution, 2005, 60, 207-220.	1.8	52
125	Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis. Insect Biochemistry and Molecular Biology, 2005, 35, 597-609.	2.7	90
126	A <i>Brevibacillus choshinensis</i> System That Secretes Cytoplasmic Proteins. Journal of Molecular Microbiology and Biotechnology, 2004, 8, 81-90.	1.0	4

#	Article	IF	CITATIONS
127	Two major classes of target site insensitivity mutations confer resistance to organophosphate and carbamate insecticides. Pesticide Biochemistry and Physiology, 2004, 79, 84-93.	3.6	91
128	Toxicity and Residues of Endosulfan Isomers. Reviews of Environmental Contamination and Toxicology, 2004, 183, 99-113.	1.3	44
129	Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina. Insect Biochemistry and Molecular Biology, 2004, 34, 353-363.	2.7	64
130	Kinetic efficiency of mutant carboxylesterases implicated in organophosphate insecticide resistance. Pesticide Biochemistry and Physiology, 2003, 76, 1-13.	3.6	47
131	The phosphotriesterase gene <i>opdA</i> in <i>Agrobacterium radiobacter</i> P230 is transposable. FEMS Microbiology Letters, 2003, 222, 1-8.	1.8	54
132	The genomics of insecticide resistance. Genome Biology, 2003, 4, 202.	9.6	49
133	Gene Cloning and Molecular Characterization of a Two-Enzyme System Catalyzing the Oxidative Detoxification of Î ² -Endosulfan. Applied and Environmental Microbiology, 2002, 68, 6237-6245.	3.1	53
134	maT—A Clade of Transposons Intermediate Between mariner and Tc1. Molecular Biology and Evolution, 2002, 19, 2101-2109.	8.9	44
135	Identification of an <i>opd</i> (Organophosphate Degradation) Gene in an <i>Agrobacterium</i> Isolate. Applied and Environmental Microbiology, 2002, 68, 3371-3376.	3.1	309
136	Isolation of aPseudomonas monteillistrain with a novel phosphotriesterase. FEMS Microbiology Letters, 2002, 206, 51-55.	1.8	41
137	Nucleotide Polymorphism in theEst6Promoter, Which Is Widespread in Derived Populations ofDrosophila melanogaster, Changes the Level of Esterase 6 Expressed in the Male Ejaculatory Duct. Genetics, 2002, 162, 785-797.	2.9	25
138	Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11 b bThe GenBank accession number for the hocA gene is AF469117 Microbiology (United Kingdom), 2002, 148, 2687-2695.	1.8	53
139	A Genomics Perspective on Mutant Aliesterases and Metabolic Resistance to Organophosphates. ACS Symposium Series, 2001, , 90-101.	0.5	8
140	Identification of a juvenile hormone esterase gene by matching its peptide mass fingerprint with a sequence from the Drosophila genome project. Insect Biochemistry and Molecular Biology, 2001, 31, 513-520.	2.7	53
141	MCE activities and malathion resistances in field populations of the Australian sheep blowfly (Lucilia) Tj ETQq1 \therefore	1 0.784314 2.6	l rgBT /Over
142	Reconstructing the Diversification of α-Esterases: Comparing the Gene Clusters of Drosophila buzzatii and D. melanogaster. Journal of Molecular Evolution, 2000, 51, 149-160.	1.8	15
143	Enrichment of an Endosulfan-Degrading Mixed Bacterial Culture. Applied and Environmental Microbiology, 2000, 66, 2822-2828.	3.1	152
144	The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochemistry and Molecular Biology, 1999, 29, 675-686.	2.7	158

#	Article	IF	CITATIONS
145	Propetamphos resistance in the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera:) Tj ETQq1 1 ().784314 rgB⊺ 1.1	[/Overlock
146	Two different amino acid substitutions in the ali-esterase, E3, confer alternative types of organophosphorus insecticide resistance in the sheep blowfly, Lucilia cuprina. Insect Biochemistry and Molecular Biology, 1998, 28, 139-150.	2.7	126
147	Purification and kinetic characterisation of juvenile hormone esterase from Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 1998, 28, 501-515.	2.7	39
148	Cross-Resistance Patterns Among Lucilia cuprina (Diptera: Calliphoridae) Resistant to organophosphorus Insecticides. Journal of Economic Entomology, 1998, 91, 367-375.	1.8	32
149	cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochemistry and Molecular Biology, 1997, 27, 15-25.	2.7	64
150	Characterization of the EstP protein in Drosophila melanogaster and its conservation in drosophilids. Biochemical Genetics, 1997, 35, 251-271.	1.7	24
151	Biochemistry of esterases associated with organophosphate resistance in Lucilia cuprina with comparisons to putative orthologues in other Diptera. Biochemical Genetics, 1997, 35, 17-40.	1.7	65
152	Biochemical and Physiological Differences in the Malathion Carboxylesterase Activities of Malathion-Susceptible and -Resistant Lines of the Sheep Blowfly,Lucilia cuprina. Pesticide Biochemistry and Physiology, 1996, 54, 48-55.	3.6	17
153	Comparison of an Esterase Associated with Organophosphate Resistance inLucilia cuprinawith an Orthologue Not Associated with Resistance inDrosophila melanogaster. Pesticide Biochemistry and Physiology, 1996, 55, 85-99.	3.6	18
154	Duplication and divergence of the genes of the α-esterase cluster ofDrosophila melanogaster. Journal of Molecular Evolution, 1996, 43, 241-252.	1.8	46
155	Mutational analysis ofN-linked glycosylation of esterase 6 inDrosophila melanogaster. Biochemical Genetics, 1996, 34, 201-218.	1.7	9
156	Mutational analysis ofN-linked glycosylation of esterase 6 inDrosophila melanogaster. Biochemical Genetics, 1996, 34, 201-218.	1.7	1
157	Duplication and Divergence of the Genes of the α-Esterase Cluster of Drosophila melanogaster. Journal of Molecular Evolution, 1996, 43, 241-252.	1.8	8
158	Associations of esterase 6 allozyme and activity variation with reproductive fitness inDrosophila melanogaster. Genetica, 1994, 94, 43-56.	1.1	32
159	A cluster of esterase genes on chromosome 3R ofDrosophila melanogaster includes homologues of esterase genes conferring insecticide resistance inLucilia cuprina. Biochemical Genetics, 1994, 32, 39-62.	1.7	28
160	A cluster of at least three esterase genes inLucilia cuprina includes malathion carboxylesterase and two other esterases implicated in resistance to organophosphates. Biochemical Genetics, 1994, 32, 437-453.	1.7	31
161	Causes and consequences of esterase 6 enzyme activity variation in pre-adult Drosophila melanogaster. Heredity, 1994, 73, 160-169.	2.6	11
162	Effects of the residue adjacent to the reactive serine on the substrate interactions ofDrosophila esterase 6. Biochemical Genetics, 1993, 31, 259-278.	1.7	21

#	Article	IF	CITATIONS
163	Regulatory aspects of esterase 6 activity variation in sibling Drosophila species. Heredity, 1993, 71, 41-50.	2.6	21
164	Characterisation of juvenile hormone esterase in Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 1992, 22, 665-677.	2.7	52
165	Molecular analysis of thelethal(1)B214 region at the base of theX chromosome ofDrosophila melanogaster. Chromosoma, 1992, 101, 456-466.	2.2	8
166	Biochemistry and physiology of esterases in organophosphate-susceptible and -resistant strains of the Australian sheep blowfly, Lucilia cuprina. Pesticide Biochemistry and Physiology, 1991, 41, 305-318.	3.6	41
167	Biochemical and physiological studies of soluble esterases fromDrosophila melanogaster. Biochemical Genetics, 1991, 29, 365-388.	1.7	89
168	Insecticide Resistance as a Model System for Studying Molecular Evolution. , 1990, , 293-314.		15
169	Regulatory Evolution of \hat{l}^2 -Carboxyl Esterases in Drosophila. , 1990, , 359-387.		10
170	Variation in the amount and activity of esterase 6 in a natural population of Drosophila melanogaster. Heredity, 1989, 62, 27-34.	2.6	14
171	High resolution electrophoretic variation at the esterase-6 locus in a natural population of Drosophila melanogaster. Heredity, 1987, 59, 259-264.	2.6	27