
Gianpiero Buscarino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing carbon dots fluorescence via plasmonic resonance energy transfer. Materials Research Bulletin, 2022, 149, 111746.	2.7	6
2	Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties. ACS Applied Materials & Interfaces, 2022, 14, 2551-2563.	4.0	15
3	Photoinduced charge separation in functional carbon-silver nanohybrids. Physical Chemistry Chemical Physics, 2022, , .	1.3	0
4	Disclosing the emissive surface traps in green-emitting carbon nanodots. Carbon, 2021, 173, 454-461.	5.4	16
5	A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury Ions. Nanomaterials, 2021, 11, 1265.	1.9	25
6	Fluorescent Carbon Nanodots as Sensors of Toxic Metal Ions and Pesticides. Engineering Proceedings, 2021, 6, .	0.4	1
7	Structure Effects Induced by High Mechanical Compaction of STAMâ€17â€OEt MOF Powders. European Journal of Inorganic Chemistry, 2021, 2021, 2334-2342.	1.0	5
8	Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids. ACS Applied Materials & Interfaces, 2021, 13, 49232-49241.	4.0	5
9	Sensing of Transition Metals by Top-Down Carbon Dots. Applied Sciences (Switzerland), 2021, 11, 10360.	1.3	3
10	Synthesis of multi-color luminescent ZnO nanoparticles by ultra-short pulsed laser ablation. Applied Surface Science, 2020, 506, 144954.	3.1	21
11	Structural and CO ₂ Capture Properties of Ethylenediamine-Modified HKUST-1 Metal–Organic Framework. Crystal Growth and Design, 2020, 20, 5455-5465.	1.4	35
12	Bending Sensors Based on Thin Films of Semitransparent Bithiopheneâ€Fulleropyrrolidine Bisadducts. ChemPlusChem, 2020, 85, 2455-2464.	1.3	3
13	Carbon Nanodots as Functional Excipient to Develop Highly Stable and Smart PLGA Nanoparticles Useful in Cancer Theranostics. Pharmaceutics, 2020, 12, 1012.	2.0	18
14	Pressure-Dependent Tuning of Photoluminescence and Size Distribution of Carbon Nanodots for Theranostic Anticancer Applications. Materials, 2020, 13, 4899.	1.3	8
15	Dynamic Modification of Fermi Energy in Single-Layer Graphene by Photoinduced Electron Transfer from Carbon Dots. Nanomaterials, 2020, 10, 528.	1.9	9
16	Multitechnique Analysis of the Hydration in Three Different Copper Paddle-Wheel Metal–Organic Frameworks. Journal of Physical Chemistry C, 2019, 123, 28219-28232.	1.5	10
17	Metal–Organic Frameworkâ€Activated Carbon Composite Materials for the Removal of Ammonia from Contaminated Airstreams. Angewandte Chemie - International Edition, 2019, 58, 11747-11751.	7.2	40
18	Metal–Organic Frameworkâ€Activated Carbon Composite Materials for the Removal of Ammonia from Contaminated Airstreams. Angewandte Chemie, 2019, 131, 11873-11877.	1.6	8

#	Article	IF	CITATIONS
19	Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine. ACS Applied Materials & Interfaces, 2019, 11, 19854-19866.	4.0	61
20	Influence of oxide substrates on monolayer graphene doping process by thermal treatments in oxygen. Carbon, 2019, 149, 546-555.	5.4	12
21	The Relevance of Point Defects in Studying Silica-Based Materials from Bulk to Nanosystems. Electronics (Switzerland), 2019, 8, 1378.	1.8	3
22	Unveiled the Source of the Structural Instability of HKUST-1 Powders upon Mechanical Compaction: Definition of a Fully Preserving Tableting Method. Journal of Physical Chemistry C, 2019, 123, 1730-1741.	1.5	15
23	Graphene‣iO 2 Interaction from Composites to Doping. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800540.	0.8	5
24	Photoinduced charge transfer from Carbon Dots to Graphene in solid composite. Thin Solid Films, 2019, 669, 620-624.	0.8	6
25	β-C ₃ N ₄ Nanocrystals: Carbon Dots with Extraordinary Morphological, Structural, and Optical Homogeneity. Chemistry of Materials, 2018, 30, 1695-1700.	3.2	76
26	Ethanol Controls the Self-Assembly and Mesoscopic Properties of Human Insulin Amyloid Spherulites. Journal of Physical Chemistry B, 2018, 122, 3101-3112.	1.2	28
27	Monolayer graphene doping and strain dynamics induced by thermal treatments in controlled atmosphere. Carbon, 2018, 127, 270-279.	5.4	29
28	Inkjet printing Ag nanoparticles for SERS hot spots. Analytical Methods, 2018, 10, 3215-3223.	1.3	33
29	Light-Induced Formation of Pb ³⁺ Paramagnetic Species in Lead Halide Perovskites. ACS Energy Letters, 2018, 3, 1840-1847.	8.8	28
30	Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning. Nanoscale, 2018, 10, 15317-15323.	2.8	33
31	Confined crystallization of a HKUST-1 metal–organic framework within mesostructured silica with enhanced structural resistance towards water. Journal of Materials Chemistry A, 2017, 5, 22305-22315.	5.2	47
32	Determination of Geometry Arrangement of Copper Ions in HKUST-1 by XAFS During a Prolonged Exposure to Air. Journal of Physical Chemistry C, 2017, 121, 24853-24860.	1.5	26
33	Nitrogen-doped carbon dots embedded in a SiO2 monolith for solid-state fluorescent detection of Cu2+ ions. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	17
34	Structural and thermal stability of graphene oxide-silica nanoparticles nanocomposites. Journal of Alloys and Compounds, 2017, 695, 2054-2064.	2.8	32
35	In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS ₂ in O ₂ -controlled atmosphere. Beilstein Journal of Nanotechnology, 2017, 8, 418-424.	1.5	13
36	Investigation by Raman Spectroscopy of the Decomposition Process of HKUST-1 upon Exposure to Air. Journal of Spectroscopy, 2016, 2016, 1-7.	0.6	56

#	Article	IF	CITATIONS
37	Ge-doped silica nanoparticles: production and characterisation. Optical Materials Express, 2016, 6, 2213.	1.6	4
38	Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution. Journal of Applied Physics, 2016, 120, .	1.1	7
39	Decomposition Process of Carboxylate MOF HKUST-1 Unveiled at the Atomic Scale Level. Journal of Physical Chemistry C, 2016, 120, 12879-12889.	1.5	99
40	Luminescence mechanisms of defective ZnO nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 16237-16244.	1.3	89
41	Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C ₃ N ₄ nanocrystalline structure. Journal of Materials Chemistry C, 2016, 4, 2598-2605.	2.7	53
42	Substrate and atmosphere influence on oxygen p-doped graphene. Carbon, 2016, 107, 696-704.	5.4	15
43	The thin and medium filters of the EPIC camera on-board XMM-Newton: measured performance after more than 15Âyears of operation. Experimental Astronomy, 2016, 42, 179-197.	1.6	5
44	Effect of thermal annealing on the luminescence of defective ZnO nanoparticles synthesized by pulsed laser ablation in water. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 890-894.	0.8	4
45	Methyl Radical in Clathrate Silica Voids. The Peculiar Physisorption Features of the Guest–Host Molecular Dynamics Interaction. Journal of Physical Chemistry A, 2016, 120, 6155-6169.	1.1	8
46	Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution. Biophysical Chemistry, 2016, 216, 23-30.	1.5	9
47	Effect of air on oxygen pâ€doped graphene on SiO ₂ . Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2341-2344.	0.8	26
48	Photoluminescence properties of S2 molecule trapped in Melanophlogite. Physics and Chemistry of Minerals, 2016, 43, 171-179.	0.3	2
49	Photoluminescence of Carbon Dots Embedded in a SiO2 Matrix. Materials Today: Proceedings, 2016, 3, S258-S265.	0.9	12
50	A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids. Journal of Alloys and Compounds, 2016, 664, 428-438.	2.8	39
51	β-ray irradiation effects on silica nanoparticles. IOP Conference Series: Materials Science and Engineering, 2015, 80, 012011.	0.3	1
52	Silica nanoparticle core structure examined by the E′Siγ center 29Si strong hyperfine interaction. Journal of Non-Crystalline Solids, 2015, 423-424, 41-44.	1.5	3
53	Effects of Pressure, Thermal Treatment, and O ₂ Loading in MCM41, MSU-H, and MSU-F Mesoporous Silica Systems Probed by Raman Spectroscopy. Journal of Physical Chemistry C, 2015, 119, 27434-27441.	1.5	5
54	Structure of the FeBTC Metal–Organic Framework: A Model Based on the Local Environment Study. Journal of Physical Chemistry C, 2015, 119, 7826-7830.	1.5	59

GIANPIERO BUSCARINO

#	Article	IF	CITATIONS
55	Graphene p-Type Doping and Stability by Thermal Treatments in Molecular Oxygen Controlled Atmosphere. Journal of Physical Chemistry C, 2015, 119, 22718-22723.	1.5	41
56	Aging of MCM41, MSU-H and MSU-F mesoporous systems investigated through the Raman spectroscopy. , 2014, , .		0
57	Properties of HO 2 $\hat{a} \in \hat{c}$ radicals induced by \hat{I}^3 -ray irradiation in silica nanoparticles. Journal of Non-Crystalline Solids, 2014, 405, 116-123.	1.5	0
58	Visible-ultraviolet vibronic emission of silica nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 22028-22034.	1.3	60
59	Isolation of the CH ₃ Ë™ rotor in a thermally stable inert matrix: first characterization of the gradual transition from classical to quantum behaviour at low temperatures. Physical Chemistry Chemical Physics, 2014, 16, 13360-13366.	1.3	8
60	Thermally induced structural modifications and O 2 trapping in highly porous silica nanoparticles. Materials Chemistry and Physics, 2014, 148, 956-963.	2.0	3
61	Alpha and deuteron irradiation effects on silica nanoparticles. Journal of Materials Science, 2014, 49, 6475-6484.	1.7	4
62	Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water. Applied Surface Science, 2014, 302, 62-65.	3.1	37
63	EPR on Radiation-Induced Defects in SiO2. , 2014, , 255-295.		13
64	Structural properties of core and surface of silica nanoparticles investigated by Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 810-816.	1.2	51
65	Entrapping of O ₂ Molecules in Nanostructured Silica Probed by Photoluminescence. Journal of Physical Chemistry C, 2013, 117, 2616-2622.	1.5	19
66	Raman and IR investigation of silica nanoparticles structure. Journal of Non-Crystalline Solids, 2013, 362, 20-24.	1.5	64
67	Optical and morphological properties of infrared emitting functionalized silica nanoparticles. Materials Chemistry and Physics, 2013, 142, 763-769.	2.0	6
68	Defectâ€related visible luminescence of silica nanoparticles. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 658-661.	0.8	11
69	Investigation on the generation process of HO2 radicals by Î ³ -ray irradiation in O2-loaded fumed silica. Journal of Non-Crystalline Solids, 2013, 362, 152-155.	1.5	4
70	Properties of methyl radical trapped in amorphous SiO2 and in natural SiO2-clathrate Melanophlogite. Journal of Non-Crystalline Solids, 2013, 361, 9-12.	1.5	9
71	Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation I: laboratory measurements on back-up filters. Proceedings of SPIE, 2013, , .	0.8	8
72	Oxidation Processes in Sicilian Olive Oils Investigated by a Combination of Optical and EPR Spectroscopy. Journal of Food Science, 2012, 77, C1084-9.	1.5	15

GIANPIERO BUSCARINO

#	Article	IF	CITATIONS
73	Structure of Amorphous SiO ₂ Nanoparticles Probed through the E′ _γ Centers. Journal of Physical Chemistry C, 2012, 116, 144-149.	1.5	22
74	A two-component model for the 2260cmâ^'1 infrared absorption band in electron irradiated amorphous SiO2. Journal of Non-Crystalline Solids, 2011, 357, 1926-1930.	1.5	1
75	Sintering process of amorphous SiO2 nanoparticles investigated by AFM, IR and Raman techniques. Journal of Non-Crystalline Solids, 2011, 357, 1866-1870.	1.5	15
76	Structural and luminescence properties of amorphous SiO2 nanoparticles. Journal of Non-Crystalline Solids, 2011, 357, 1941-1944.	1.5	25
77	Structural organization of silanol and silicon hydride groups in the amorphous silicon dioxide network. European Physical Journal B, 2011, 83, 47-52.	0.6	11
78	Effects of thermal treatments in controlled atmosphere on the Ce oxidation state in Ce–Ti-Eu doped SiO2 sol–gel glasses. Journal of Sol-Gel Science and Technology, 2011, 58, 56-61.	1.1	3
79	Preparation and photoactivity of samarium loaded anatase, brookite and rutile catalysts. Applied Catalysis B: Environmental, 2011, 104, 291-299.	10.8	48
80	Structural properties of the range-II- and range-III order in amorphous-SiO2 probed by electron paramagnetic resonance and Raman spectroscopy. European Physical Journal B, 2010, 76, 197-201.	0.6	7
81	Wide range excitation of visible luminescence in nanosilica. Solid State Communications, 2010, 150, 2278-2280.	0.9	16
82	The role of impurities in the irradiation induced densification of amorphous SiO2. Journal of Physics Condensed Matter, 2010, 22, 255403.	0.7	7
83	Thermally Induced Structural Modification of Silica Nanoparticles Investigated by Raman and Infrared Absorption Spectroscopies. Journal of Physical Chemistry C, 2010, 114, 13991-13997.	1.5	33
84	Atomic force microscopy and Raman investigation on the sintering process of amorphous SiO2 nanoparticles. Journal of Applied Physics, 2010, 108, 074314.	1.1	24
85	Structural modifications induced by electron irradiation in SiO ₂ glass: Local densification measurements. Europhysics Letters, 2009, 87, 26007.	0.7	11
86	Polyamorphic transformation induced by electron irradiation ina-SiO2glass. Physical Review B, 2009, 80, .	1.1	27
87	Photosensitivity of SiO2–Al and SiO2–Na glasses under ArF (193nm) laser. Journal of Non-Crystalline Solids, 2009, 355, 1066-1074.	1.5	26
88	Variability of the Si–O–Si angle in amorphous-SiO2 probed by electron paramagnetic resonance and Raman spectroscopy. Journal of Non-Crystalline Solids, 2009, 355, 1092-1094.	1.5	19
89	S29i attribution of the 1.3 mT hyperfine structure of the $E\hat{a}\in 2\hat{1}^3$ centers in amorphous SiO2. Journal of Applied Physics, 2009, 105, 093514.	1.1	5
90	Optical absorption and electron paramagnetic resonance of theEα′center in amorphous silicon dioxide. Physical Review B, 2008, 77, .	1.1	12

GIANPIERO BUSCARINO

#	Article	IF	CITATIONS
91	Optical absorption band at5.8eVassociated with theEγ′centers in amorphous silicon dioxide: Optical absorption and EPR measurements. Physical Review B, 2008, 77, .	1.1	17
92	Electron paramagnetic resonance investigation on the hyperfine structure of the center in amorphous silicon dioxide. Journal of Non-Crystalline Solids, 2007, 353, 518-521.	1.5	3
93	Experimental evidence of centers generation from oxygen vacancies in a-SiO2. Journal of Non-Crystalline Solids, 2007, 353, 577-580.	1.5	15
94	Electron paramagnetic resonance line shape investigation of the29Si hyperfine doublet of the E′γ center in a-SiO2. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1301-1304.	0.8	4
95	Structural inhomogeneity of Ge-doped amorphous SiO2 probed by photoluminescence lifetime measurements under synchrotron radiation. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 934-937.	0.8	2
96	Si29Hyperfine Structure of theE′αCenter in Amorphous Silicon Dioxide. Physical Review Letters, 2006, 97, 135502.	2.9	31
97	Characterization ofEâ€2δand triplet point defects in oxygen-deficient amorphous silicon dioxide. Physical Review B, 2006, 73, .	1.1	32
98	Hyperfine structure of theEâ€2δcentre in amorphous silicon dioxide. Journal of Physics Condensed Matter, 2006, 18, 5213-5219.	0.7	3
99	INVESTIGATION ON THE MICROSCOPIC STRUCTURE OF Eâ€2Î′ CENTER IN AMORPHOUS SILICON DIOXIDE BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. Modern Physics Letters B, 2006, 20, 451-474.	1.0	7
100	Delocalized Nature of theEl´â€²Center in Amorphous Silicon Dioxide. Physical Review Letters, 2005, 94, 125501.	2.9	35
101	Growth of paramagnetic defects by gamma rays irradiation in oxygen-deficient silica. Journal of Non-Crystalline Solids, 2005, 351, 1787-1790.	1.5	4
102	Modifications of optical absorption band of center in silica. Journal of Non-Crystalline Solids, 2005, 351, 1801-1804.	1.5	9
103	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd"	1.5	11
104	xmms:so="intep;)/www.elsevier.com/xm/common/structoro/ator xmms:ce="intep;)/urnat of Non-Crystall Structural relaxation ofElî3â€2centers in amorphous silica. Physical Review B, 2002, 66, .	1.1	43