

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592599/publications.pdf Version: 2024-02-01

		53660	30010
153	11,116	45	103
papers	citations	h-index	g-index
153	153	153	13862
all docs	docs citations	times ranked	citing authors

Сш Үн

#	Article	IF	CITATIONS
1	Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 2009, 9, 1752-1758.	4.5	2,822
2	A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Scientific Reports, 2012, 2, 754.	1.6	800
3	Highly Ï€â€Extended Copolymers with Diketopyrrolopyrrole Moieties for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 4618-4622.	11.1	707
4	Uniform hexagonal graphene flakes and films grown on liquid copper surface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7992-7996.	3.3	417
5	Patterned Graphene as Source/Drain Electrodes for Bottom ontact Organic Fieldâ€Effect Transistors. Advanced Materials, 2008, 20, 3289-3293.	11.1	373
6	Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Accounts of Chemical Research, 2009, 42, 1573-1583.	7.6	321
7	Oxygen-Aided Synthesis of Polycrystalline Graphene on Silicon Dioxide Substrates. Journal of the American Chemical Society, 2011, 133, 17548-17551.	6.6	315
8	Low Temperature Growth of Highly Nitrogen-Doped Single Crystal Graphene Arrays by Chemical Vapor Deposition. Journal of the American Chemical Society, 2012, 134, 11060-11063.	6.6	287
9	Experimental Techniques for the Fabrication and Characterization of Organic Thin Films for Field-Effect Transistors. Chemical Reviews, 2011, 111, 3358-3406.	23.0	241
10	Scalable Synthesis of Few-Layer Graphene Ribbons with Controlled Morphologies by a Template Method and Their Applications in Nanoelectromechanical Switches. Journal of the American Chemical Society, 2009, 131, 11147-11154.	6.6	214
11	Equiangular Hexagonâ€Shapeâ€Controlled Synthesis of Graphene on Copper Surface. Advanced Materials, 2011, 23, 3522-3525.	11.1	173
12	Self-organized graphene crystal patterns. NPG Asia Materials, 2013, 5, e36-e36.	3.8	153
13	Fractal Etching of Graphene. Journal of the American Chemical Society, 2013, 135, 6431-6434.	6.6	140
14	Nearâ€Equilibrium Chemical Vapor Deposition of Highâ€Quality Singleâ€Crystal Graphene Directly on Various Dielectric Substrates. Advanced Materials, 2014, 26, 1348-1353.	11.1	132
15	Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011, 4, 1208-1214.	5.8	120
16	Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air. Chemistry of Materials, 2013, 25, 3589-3596.	3.2	119
17	Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transferâ€Free Device Fabrication. Advanced Materials, 2016, 28, 4956-4975.	11.1	113
18	Two‣tage Metalâ€Catalystâ€Free Growth of Highâ€Quality Polycrystalline Graphene Films on Silicon Nitride Substrates. Advanced Materials, 2013, 25, 992-997.	11.1	112

#	Article	IF	CITATIONS
19	Diazaisoindigo-Based Polymers with High-Performance Charge-Transport Properties: From Computational Screening to Experimental Characterization. Chemistry of Materials, 2016, 28, 2209-2218.	3.2	110
20	Threeâ€Ðimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 192-197.	7.2	106
21	Pyrene fused perylene diimides: synthesis, characterization and applications in organic field-effect transistors and optical limiting with high performance. Chemical Communications, 2015, 51, 7156-7159.	2.2	101
22	Graphene Single Crystals: Size and Morphology Engineering. Advanced Materials, 2015, 27, 2821-2837.	11.1	99
23	Bisâ€Ðiketopyrrolopyrrole Moiety as a Promising Building Block to Enable Balanced Ambipolar Polymers for Flexible Transistors. Advanced Materials, 2017, 29, 1606162.	11.1	99
24	A New Method to Synthesize Complicated Multibranched Carbon Nanotubes with Controlled Architecture and Composition. Nano Letters, 2006, 6, 186-192.	4.5	93
25	Improvements in Stability and Performance of <i>N,N′</i> â€Dialkyl Perylene Diimideâ€Based nâ€Type Thinâ€Fi Transistors. Advanced Materials, 2009, 21, 1631-1635.	ilm 11.1	90
26	Diketopyrrolopyrrole-Based π-Conjugated Copolymer Containing β-Unsubstituted Quintetthiophene Unit: A Promising Material Exhibiting High Hole-Mobility for Organic Thin-Film Transistors. Chemistry of Materials, 2012, 24, 4350-4356.	3.2	85
27	Inkjet Printing Shortâ€Channel Polymer Transistors with Highâ€Performance and Ultrahigh Photoresponsivity. Advanced Materials, 2014, 26, 4683-4689.	11.1	82
28	Active Morphology Control for Concomitant Long Distance Spin Transport and Photoresponse in a Single Organic Device. Advanced Materials, 2016, 28, 2609-2615.	11.1	77
29	Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]dithiophene-Based Donor–Acceptor Copolymer Semiconductors for High-Mobility Field-Effect Transistors and Efficient Polymer Solar Cells. Macromolecules, 2013, 46, 3358-3366.	2.2	75
30	Heteroatom Substituted Organic/Polymeric Semiconductors and their Applications in Fieldâ€Effect Transistors. Advanced Materials, 2014, 26, 6898-6904.	11.1	75
31	Wellâ€Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward Highâ€Performance Flexible Fieldã€Effect Transistors. Advanced Materials, 2018, 30, 1705286.	11.1	70
32	Modified Engineering of Graphene Nanoribbons Prepared via On‧urface Synthesis. Advanced Materials, 2020, 32, e1905957.	11.1	65
33	Semiconducting Polymers Based on Isoindigo and Its Derivatives: Synthetic Tactics, Structural Modifications, and Applications. Advanced Functional Materials, 2021, 31, 2010979.	7.8	58
34	Covalent organic frameworks: Design, synthesis, and performance for photocatalytic applications. Nano Today, 2021, 40, 101247.	6.2	57
35	Morphology Optimization for the Fabrication of High Mobility Thinâ€Film Transistors. Advanced Materials, 2011, 23, 3128-3133.	11.1	55
36	Controlled Growth of Singleâ€Crystal Twelveâ€Pointed Graphene Grains on a Liquid Cu Surface. Advanced Materials, 2014, 26, 6423-6429.	11.1	55

#	Article	IF	CITATIONS
37	Solventâ€Assisted Reâ€annealing of Polymer Films for Solutionâ€Processable Organic Fieldâ€Effect Transistors. Advanced Materials, 2010, 22, 1273-1277.	11.1	54
38	Facile growth of vertically-aligned graphene nanosheets via thermal CVD: The experimental and theoretical investigations. Carbon, 2017, 121, 1-9.	5.4	53
39	Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate. Journal of the American Chemical Society, 2019, 141, 11004-11008.	6.6	52
40	A diketopyrrolopyrrole–thiazolothiazole copolymer for high performance organic field-effect transistors. Chemical Communications, 2013, 49, 1998.	2.2	49
41	Etching-Controlled Growth of Graphene by Chemical Vapor Deposition. Chemistry of Materials, 2017, 29, 1022-1027.	3.2	49
42	Fluorinated Dithienylethene–Naphthalenediimide Copolymers for High-Mobility n-Channel Field-Effect Transistors. Macromolecules, 2017, 50, 6098-6107.	2.2	48
43	Selfâ€Aligned Singleâ€Crystal Graphene Grains. Advanced Functional Materials, 2014, 24, 1664-1670.	7.8	47
44	Fluorodiphenylethene-Containing Donor–Acceptor Conjugated Copolymers with Noncovalent Conformational Locks for Efficient Polymer Field-Effect Transistors. Macromolecules, 2016, 49, 2582-2591.	2.2	47
45	Innovation of Materials, Devices, and Functionalized Interfaces in Organic Spintronics. Advanced Functional Materials, 2021, 31, 2100550.	7.8	47
46	Perspective of graphene-based electronic devices: Graphene synthesis and diverse applications. APL Materials, 2019, 7, .	2.2	46
47	High-Performance Field-Effect Transistors Fabricated with Donor–Acceptor Copolymers Containing S÷··O Conformational Locks Supplied by Diethoxydithiophenethenes. Macromolecules, 2016, 49, 6401-6410.	2.2	43
48	Threeâ€Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 198-203.	1.6	41
49	Layerâ€6tacking Growth and Electrical Transport of Hierarchical Graphene Architectures. Advanced Materials, 2014, 26, 3218-3224.	11.1	39
50	Synthesis and Characterization of Angular-Shaped Naphtho[1,2- <i>b</i> ;5,6- <i>b</i> ′]difuran–Diketopyrrolopyrrole-Containing Copolymers for High-Performance Organic Field-Effect Transistors. Macromolecules, 2014, 47, 616-625.	2.2	39
51	Thiazole-Flanked Diketopyrrolopyrrole Polymeric Semiconductors for Ambipolar Field-Effect Transistors with Balanced Carrier Mobilities. ACS Applied Materials & Interfaces, 2016, 8, 34725-34734.	4.0	39
52	Direct Topâ€Down Fabrication of Largeâ€Area Graphene Arrays by an In Situ Etching Method. Advanced Materials, 2015, 27, 4195-4199.	11.1	36
53	Structural Engineering in Polymer Semiconductors with Aromatic N-Heterocycles. Chemistry of Materials, 2021, 33, 1513-1539.	3.2	36
54	Towards Highâ€Performance Resistive Switching Behavior through Embedding a Dâ€A System into 2D Imineâ€Linked Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 27135-27143.	7.2	35

#	Article	IF	CITATIONS
55	Tuning Frontier Orbital Energetics of Azaisoindigoâ€Based Polymeric Semiconductors to Enhance the Chargeâ€Transport Properties. Advanced Electronic Materials, 2017, 3, 1700078.	2.6	34
56	Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one-based polymers with a bandgap up to 2.02 eV for high performance field-effect transistors and polymer solar cells with an open-circuit voltage up to 0.98 V and an efficiency up to 6.84%. Journal of Materials Chemistry A, 2015, 3, 20516-20526.	5.2	33
57	Fabrication Strategies of Twisted Bilayer Graphenes and Their Unique Properties. Advanced Materials, 2021, 33, e2004974.	11.1	33
58	Recent structural evolution of lactam- and imide-functionalized polymers applied in organic field-effect transistors and organic solar cells. Chemical Science, 2021, 12, 6844-6878.	3.7	32
59	Highly planar cross-conjugated alternating polymers with multiple conformational locks: synthesis, characterization and their field-effect properties. Journal of Materials Chemistry C, 2016, 4, 9266-9275.	2.7	31
60	Gas-Flow-Driven Aligned Growth of Graphene on Liquid Copper. Chemistry of Materials, 2019, 31, 1231-1236.	3.2	31
61	Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition. Journal of Materials Chemistry C, 2013, 1, 2990.	2.7	30
62	Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. Journal of Materials Chemistry C, 2016, 4, 7464-7471.	2.7	28
63	Impact of alkyl side chains on the photovoltaic and charge mobility properties of naphthodithiophene–benzothiadiazole copolymers. Polymer Chemistry, 2014, 5, 836-843.	1.9	27
64	Controllable Synthesis and Performance Modulation of 2D Covalent–Organic Frameworks. Small, 2021, 17, e2100918.	5.2	27
65	Recent Advances in Growth and Modification of Grapheneâ€Based Energy Materials: From Chemical Vapor Deposition to Reduction of Graphene Oxide. Small Methods, 2019, 3, 1900071.	4.6	26
66	Recent Advances in Growth of Large‧ized 2D Single Crystals on Cu Substrates. Advanced Materials, 2021, 33, e2003956.	11.1	26
67	Multicomponent Blend Systems Used in Organic Field-Effect Transistors: Charge Transport Properties, Large-Area Preparation, and Functional Devices. Chemistry of Materials, 2021, 33, 2229-2257.	3.2	26
68	Approaching high charge carrier mobility by alkylating both donor and acceptor units at the optimized position in conjugated polymers. Polymer Chemistry, 2016, 7, 4046-4053.	1.9	25
69	Vinylidenedithiophenmethyleneoxindole: a centrosymmetric building block for donor–acceptor copolymers. Polymer Chemistry, 2016, 7, 1413-1421.	1.9	25
70	Alkyl chain engineering of pyrene-fused perylene diimides: impact on transport ability and microfiber self-assembly. Materials Chemistry Frontiers, 2017, 1, 2341-2348.	3.2	23
71	Recent progress in quinoidal semiconducting polymers: structural evolution and insight. Materials Chemistry Frontiers, 2021, 5, 76-96.	3.2	23
72	Tuning the light response of organic field-effect transistors using fluorographene nanosheets as an interface modification layer. Journal of Materials Chemistry C, 2014, 2, 6484.	2.7	22

#	Article	IF	CITATIONS
73	Tuning Charge Carrier and Spin Transport Properties via Structural Modification of Polymer Semiconductors. ACS Applied Materials & Interfaces, 2019, 11, 30089-30097.	4.0	22
74	Realizing n-Type Field-Effect Performance via Introducing Trifluoromethyl Groups into the Donor–Acceptor Copolymer Backbone. Macromolecules, 2019, 52, 2911-2921.	2.2	22
75	Preparation Engineering of Two-Dimensional Heterostructures <i>via</i> Bottom-Up Growth for Device Applications. ACS Nano, 2021, 15, 11040-11065.	7.3	22
76	Developing Grapheneâ€Based Moiré Heterostructures for Twistronics. Advanced Science, 2022, 9, e2103170.	5.6	21
77	High-performance polymer field-effect transistors fabricated with low-bandgap DPP-based semiconducting materials. Polymer Chemistry, 2015, 6, 6457-6464.	1.9	20
78	Donor–Acceptor Conjugated Copolymers Containing Difluorothienylethylene-Bridged Methyleneoxindole or Methyleneazaoxindole Acceptor Units: Synthesis, Properties, and Their Application in Field-Effect Transistors. Macromolecules, 2018, 51, 7093-7103.	2.2	20
79	Liquid catalysts: an innovative solution to 2D materials in CVD processes. Materials Horizons, 2018, 5, 1021-1034.	6.4	19
80	High-Electron Mobility Tetrafluoroethylene-Containing Semiconducting Polymers. Chemistry of Materials, 2020, 32, 2330-2340.	3.2	18
81	High-performance FDTE-based polymer semiconductors with Fâ‹ H intramolecular noncovalent interactions: Synthesis, characterization, and their field-effect properties. Dyes and Pigments, 2018, 149, 149-157.	2.0	17
82	Highâ€performance fieldâ€effect transistors based on furanâ€containing diketopyrrolopyrrole copolymer under a mild annealing temperature. Journal of Polymer Science Part A, 2014, 52, 1970-1977.	2.5	16
83	Synthesis, characterization, and field-effect properties of (E)-2-(2-(thiophen-2-yl)vinyl)thiophen-based donor–acceptor copolymers. Polymer, 2015, 68, 302-307.	1.8	16
84	Highly planar thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for organic field-effect transistors. RSC Advances, 2016, 6, 35394-35401.	1.7	16
85	Highly coplanar bis(thiazol-2-yl)-diketopyrrolopyrrole based donor–acceptor copolymers for ambipolar field effect transistors. RSC Advances, 2016, 6, 78008-78016.	1.7	16
86	Magnetism of N-doped graphene nanoribbons with zigzag edges from bottom-up fabrication. RSC Advances, 2016, 6, 10017-10023.	1.7	16
87	Hydrogen-dominated metal-free growth of graphitic-nitrogen doped graphene with n-type transport behaviors. Carbon, 2020, 161, 123-131.	5.4	16
88	Preparation, Bandgap Engineering, and Performance Control of Graphene Nanoribbons. Chemistry of Materials, 2022, 34, 3588-3615.	3.2	16
89	Largeâ€Area Growth of Fiveâ€Lobed and Triangular Graphene Grains on Textured Cu Substrate. Advanced Materials Interfaces, 2016, 3, 1600347.	1.9	15
90	Rational design of diarylethyleneâ€based polymeric semiconductors for highâ€performance organic fieldâ€effect transistors. Journal of Polymer Science Part A, 2017, 55, 585-603.	2.5	15

#	Article	IF	CITATIONS
91	Highly Sensitive, Low Voltage Operation, and Low Power Consumption Resistive Strain Sensors Based on Vertically Oriented Graphene Nanosheets. Advanced Materials Technologies, 2019, 4, 1800572.	3.0	15
92	Regioirregular ambipolar naphthalenediimideâ€based alternating polymers: Synthesis, characterization, and application in fieldâ€effect transistors. Journal of Polymer Science Part A, 2017, 55, 3627-3635.	2.5	14
93	Molecular engineering of (<i>E</i>)-1,2-bis(3-cyanothiophene-2-yl)ethene-based polymeric semiconductors for unipolar n-channel field-effect transistors. Polymer Chemistry, 2020, 11, 7340-7348.	1.9	14
94	An insight into the role of side chains in the microstructure and carrier mobility of high-performance conjugated polymers. Polymer Chemistry, 2021, 12, 2471-2480.	1.9	14
95	A minireview on chemical vapor deposition growth of wafer-scale monolayer <i>h</i> -BN single crystals. Nanoscale, 2021, 13, 17310-17317.	2.8	14
96	Microstructure engineering of polymer semiconductor thin films for high-performance field-effect transistors using a bi-component processing solution. Journal of Materials Chemistry C, 2017, 5, 3568-3578.	2.7	13
97	Cyanostyrylthiophene-Based Ambipolar Conjugated Polymers: Synthesis, Properties, and Analyses of Backbone Fluorination Effect. Macromolecules, 2018, 51, 966-976.	2.2	13
98	Polydopamine Film Selfâ€Assembled at Air/Water Interface for Organic Electronic Memory Devices. Advanced Materials Interfaces, 2020, 7, 2000979.	1.9	13
99	Naphthodithieno[3,2-b]thiophene-based semiconductors: synthesis, characterization, and device performance of field-effect transistors. Organic Chemistry Frontiers, 2014, 1, 333-337.	2.3	12
100	Ambipolar tetrafluorodiphenylethene-based donor–acceptor copolymers: synthesis, properties, backbone conformation and fluorine-induced conformational locks. Polymer Chemistry, 2017, 8, 879-889.	1.9	12
101	Synthesis of an indacenodithiophene-based fully conjugated ladder polymer and its optical and electronic properties. Polymer Chemistry, 2018, 9, 2227-2231.	1.9	12
102	Ambipolar charge transport in an organic/inorganic van der Waals p–n heterojunction. Journal of Materials Chemistry C, 2018, 6, 12976-12980.	2.7	12
103	Chalcogenophene-Sensitive Charge Carrier Transport Properties in A–D–A′′–D Type NBDO-Based Copolymers for Flexible Field-Effect Transistors. Macromolecules, 2018, 51, 8662-8671.	2.2	12
104	Magnetoresistance and Spinterface of Organic Spin Valves Based on Diketopyrrolopyrrole Polymers. Advanced Electronic Materials, 2019, 5, 1900318.	2.6	12
105	Multisubstituted Azaisoindigo-Based Polymers for High-Mobility Ambipolar Thin-Film Transistors and Inverters. ACS Applied Materials & Interfaces, 2019, 11, 34171-34177.	4.0	12
106	Semiconducting Properties and Geometry-Directed Self-Assembly of Heptacyclic Anthradithiophene Diimide-Based Polymers. Chemistry of Materials, 2019, 31, 2507-2515.	3.2	12
107	Influence of Backbone Regioregularity on High-Mobility Conjugated Polymers Based on Alkylated Dithienylacrylonitrile. ACS Applied Materials & Interfaces, 2019, 11, 43416-43424.	4.0	11
108	Synthesis of Pentacene Analogues Containing Heteroatoms and Study of Their Field-effect Performance. Acta Chimica Sinica, 2012, 70, 1599.	0.5	11

#	Article	IF	CITATIONS
109	Benzothiophene-flanked diketopyrrolopyrrole polymers: impact of isomeric frameworks on carrier mobilities. RSC Advances, 2016, 6, 83448-83455.	1.7	10
110	Sensitivity enhancement of graphene Hall sensors modified by single-molecule magnets at room temperature. RSC Advances, 2017, 7, 1776-1781.	1.7	10
111	Isoindigo dye incorporated copolymers with diselenophenylethene: Synthesis, characterization, and enhanced mobilities in field-effect transistors with electrodes modified by thiol-based self-assembled monolayers. Polymer, 2017, 112, 180-188.	1.8	10
112	Highly-soluble multi-alkylated polymer semiconductors and applications in high-performance field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 9591-9598.	2.7	10
113	Room-temperature stable organic spin valves using solution-processed ambipolar naphthalenediimide-based conjugated polymers. Organic Electronics, 2020, 81, 105684.	1.4	10
114	Water-stable organic field-effect transistors based on naphthodithieno[3,2- <i>b</i>]thiophene derivatives. Journal of Materials Chemistry C, 2019, 7, 297-301.	2.7	9
115	Surface Engineering of Substrates for Chemical Vapor Deposition Growth of Graphene and Applications in Electronic and Spintronic Devices. Chemistry of Materials, 2021, 33, 8960-8989.	3.2	9
116	Naphtho[2,1-b:3,4-b′]bisthieno[3,2-b][1]benzothiophene-based semiconductors for organic field-effect transistors. Journal of Materials Chemistry C, 2015, 3, 8024-8029.	2.7	8
117	Naphthodithieno[3,2-b]thiophene-based donor-acceptor copolymers: Synthesis, characterization, and their photovoltaic and charge transport properties. Dyes and Pigments, 2016, 131, 1-8.	2.0	8
118	Controlled assembly of SiO _x nanoparticles in graphene. Materials Horizons, 2016, 3, 568-574.	6.4	8
119	Design of carbon sources: starting point for chemical vapor deposition of graphene. 2D Materials, 2019, 6, 042003.	2.0	8
120	High-performance ternary π-conjugated copolymers containing diarylethylene units: synthesis, properties, and study of substituent effects on molecular aggregation and charge transport characteristics. Journal of Materials Chemistry C, 2019, 7, 362-370.	2.7	8
121	Pentacene/non-fullerene acceptor heterojunction type phototransistors for broadened spectral photoresponsivity and ultralow level light detection. Journal of Materials Chemistry C, 2021, 9, 322-329.	2.7	8
122	Quantitative Analysis of the Role of the First Layer in p―and nâ€Type Organic Fieldâ€Effect Transistors with Graphene Electrodes. Advanced Materials, 2012, 24, 1471-1475.	11.1	7
123	Ethanediylidenebis(isoquinolinedione): A Six-Membered-Ring Diimide Building Block for Ambipolar Semiconducting Polymers. Macromolecules, 2019, 52, 8238-8247.	2.2	7
124	An Aâ^'Dâ^'Aʹâ^'Dʹ strategy enables perylenediimide-based polymer dyes exhibiting enhanced electron transport characteristics. Polymer, 2019, 180, 121712.	1.8	7
125	Revealing the Influences of Solvent Boiling Point and Alkyl Chains on the Adlayer Crystallinity of Furan-Diketopyrrolopyrrole-Thienylene Copolymer at Molecular Level. Langmuir, 2020, 36, 141-147.	1.6	7
126	Negative Magnetoresistance Behavior in Polymer Spin Valves Based on Donorâ^'Acceptor Conjugated Molecules. Advanced Materials Interfaces, 2020, 7, 2000868.	1.9	7

#	Article	IF	CITATIONS
127	<i>In situ</i> growth of large-area and self-aligned graphene nanoribbon arrays on liquid metal. National Science Review, 2021, 8, nwaa298.	4.6	7
128	Towards Highâ€Performance Resistive Switching Behavior through Embedding D‒A System into 2D Imine‣inked Covalent Organic Frameworks. Angewandte Chemie, 0, , .	1.6	7
129	Novel dialkoxy-substituted benzodithienothiophenes for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2015, 3, 10892-10897.	2.7	6
130	Tracking the Evolution of Polymer Interface Films during the Process of Thermal Annealing at the Domain and Single Molecular Levels using Scanning Tunneling Microscopy. Langmuir, 2016, 32, 9437-9444.	1.6	6
131	Tailoring molecular weight of polymeric dielectric to enhance electron and hole mobilities in polymer field-effect transistors. Polymer, 2016, 99, 496-502.	1.8	6
132	Tuning carrier transport properties of thienoisoindigo-based copolymers by loading fluorine atoms onto the diarylethylene-based electron-donating units. Polymer, 2017, 132, 12-22.	1.8	6
133	Dithienylmethanoneâ€Based Crossâ€Conjugated Polymer Semiconductors: Synthesis, Characterization, and Application in Fieldâ€Effect Transistors. Journal of Polymer Science Part A, 2018, 56, 1012-1019.	2.5	5
134	Transfer-free synthesis of multilayer graphene on silicon nitride using reusable gallium catalyst. Diamond and Related Materials, 2019, 91, 112-118.	1.8	5
135	Synthesis, characterization, and their field-effect properties of azaisoindigo-based conjugated polymers with versatile alkoxycarbonyl substituents. Polymer, 2021, 215, 123347.	1.8	5
136	One-step synthesis of seamless graphene-carbon nanotube heterojunctions by chemical vapor deposition. APL Materials, 2021, 9, .	2.2	5
137	Tunable charge-transport polarity in thienothiophene–bisoxoindolinylidene-benzodifurandione copolymers for high-performance field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 2671-2680.	2.7	5
138	Vinylidenedithiophenmethyleneoxindole-based donor-acceptor copolymers with 1D and 2D conjugated backbones: Synthesis, characterization, and their photovoltaic properties. Dyes and Pigments, 2017, 144, 1-8.	2.0	4
139	Novel Hollow Graphene Flowers Synthesized by Cuâ€Assisted Chemical Vapor Deposition. Advanced Materials Interfaces, 2018, 5, 1800347.	1.9	4
140	Incorporation of Cyanoâ€Substituted Aromatic Blocks into Naphthalene Diimideâ€Based Copolymers: Toward Unipolar nâ€Channel Fieldâ€Effect Transistors. Small Science, 2021, 1, 2100016.	5.8	4
141	Molecular and Interfacial Adjustment of Magnetoresistance in Organic Spin Valves Using Isoindigo-Based Polymers. , 0, , 1065-1073.		4
142	Graphene Arrays: Direct Top-Down Fabrication of Large-Area Graphene Arrays by an In Situ Etching Method (Adv. Mater. 28/2015). Advanced Materials, 2015, 27, 4194-4194.	11.1	3
143	Synthesis, characterization, and field-effect performance of the halogenated indolone derivatives. Dyes and Pigments, 2017, 136, 434-440.	2.0	3
144	High-performance organic field-effect transistors based on organic single crystal microribbons fabricated by an <i>in situ</i> annealing method. Materials Chemistry Frontiers, 2018, 2, 2026-2031.	3.2	3

#	Article	IF	CITATIONS
145	2D Organic Radical Conjugated Skeletons with Paramagnetic Behaviors. Advanced Materials Interfaces, 2021, 8, 2100943.	1.9	3
146	Continuous orientated growth of scaled single-crystal 2D monolayer films. Nanoscale Advances, 2021, 3, 6545-6567.	2.2	3
147	Nitrogen-embedded small-molecule semiconducting materials: Effect of chlorine atoms on their electrochemical, self-assembly, and carrier transport properties. Dyes and Pigments, 2019, 163, 615-622.	2.0	2
148	Graphene: Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface (Adv. Mater. 37/2014). Advanced Materials, 2014, 26, 6519-6519.	11.1	1
149	Novel vinylene-bridged donor–acceptor copolymers: synthesis, characterization, properties and effect of cyano substitution. Materials Chemistry Frontiers, 2017, 1, 2103-2110.	3.2	1
150	A naphthodithieno[3,2- <i>b</i>]thiophene-based copolymer as a novel third component in ternary polymer solar cells with a simultaneously enhanced open circuit voltage, short circuit current and fill factor. New Journal of Chemistry, 2018, 42, 5314-5322.	1.4	1
151	Small-molecule semiconductors containing dithienylacrylonitrile for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 11457-11464.	2.7	1
152	Remarkable effect of ï€-skeleton conformation in finitely conjugated polymer semiconductors. Journal of Materials Chemistry C, 2020, 8, 9055-9063.	2.7	1
153	Synthesis and Performance of (E)-3-Phenyl-2-(thiophen-2-yl)acrylonitrile-Based Small-Molecule Semiconductors. Organic Materials, 2019, 01, 078-087.	1.0	Ο