Jody E Phelan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592264/publications.pdf Version: 2024-02-01

Ιορν Ε Ρηειλη

#	Article	IF	CITATIONS
1	A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis. BMC Genomics, 2022, 23, 46.	2.8	8
2	PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies. Communications Biology, 2022, 5, 266.	4.4	4
3	Genomic diversity and antimicrobial resistance among non-typhoidal Salmonella associated with human disease in The Gambia. Microbial Genomics, 2022, 8, .	2.0	3
4	A phylogenomic approach for the analysis of colistin resistance-associated genes in Klebsiella pneumoniae, its mutational diversity and implications for phenotypic resistance. International Journal of Antimicrobial Agents, 2022, 59, 106581.	2.5	5
5	COVID-profiler: a webserver for the analysis of SARS-CoV-2 sequencing data. BMC Bioinformatics, 2022, 23, 137.	2.6	3
6	Molecular characterisation of second-line drug resistance among drug resistant tuberculosis patients tested in Uganda: a two and a half-year's review. BMC Infectious Diseases, 2022, 22, 363.	2.9	4
7	Characterisation of drug-resistant Mycobacterium tuberculosis mutations and transmission in Pakistan. Scientific Reports, 2022, 12, 7703.	3.3	7
8	Molecular characterization of drug-resistant Mycobacterium tuberculosis among Filipino patients derived from the national tuberculosis prevalence survey Philippines 2016. Tuberculosis, 2022, , 102211.	1.9	0
9	An integrated in silico immuno-genetic analytical platform provides insights into COVID-19 serological and vaccine targets. Genome Medicine, 2021, 13, 4.	8.2	16
10	A snapshot of translation in Mycobacterium tuberculosis during exponential growth and nutrient starvation revealed by ribosome profiling. Cell Reports, 2021, 34, 108695.	6.4	16
11	Clusters of Drug-Resistant <i>Mycobacterium tuberculosis</i> Detected by Whole-Genome Sequence Analysis of Nationwide Sample, Thailand, 2014–2017. Emerging Infectious Diseases, 2021, 27, 813-822.	4.3	13
12	Methylation analysis of Klebsiella pneumoniae from Portuguese hospitals. Scientific Reports, 2021, 11, 6491.	3.3	10
13	Distinctive genetic structure and selection patterns in Plasmodium vivax from South Asia and East Africa. Nature Communications, 2021, 12, 3160.	12.8	32
14	An inter-laboratory study to investigate the impact of the bioinformatics component on microbiome analysis using mock communities. Scientific Reports, 2021, 11, 10590.	3.3	17
15	Using deep learning to identify recent positive selection in malaria parasite sequence data. Malaria Journal, 2021, 20, 270.	2.3	15
16	Flavivirus integrations in Aedes aegypti are limited and highly conserved across samples from different geographic regions unlike integrations in Aedes albopictus. Parasites and Vectors, 2021, 14, 332.	2.5	6
17	Characterization of rifampicin-resistant Mycobacterium tuberculosis in Khyber Pakhtunkhwa, Pakistan. Scientific Reports, 2021, 11, 14194.	3.3	7
18	Structural and Genomic Insights Into Pyrazinamide Resistance in Mycobacterium tuberculosis Underlie Differences Between Ancient and Modern Lineages. Frontiers in Molecular Biosciences, 2021, 8, 619403.	3.5	2

JODY E PHELAN

#	Article	IF	CITATIONS
19	GenTB: A user-friendly genome-based predictor for tuberculosis resistance powered by machine learning. Genome Medicine, 2021, 13, 138.	8.2	27
20	Genetic diversity of candidate loci linked to Mycobacterium tuberculosis resistance to bedaquiline, delamanid and pretomanid. Scientific Reports, 2021, 11, 19431.	3.3	37
21	Whole-genome sequencing as a tool for studying the microevolution of drug-resistant serial Mycobacterium tuberculosis isolates. Tuberculosis, 2021, 131, 102137.	1.9	3
22	Whole genome sequencing reveals large deletions and other loss of function mutations in Mycobacterium tuberculosis drug resistance genes. Microbial Genomics, 2021, 7, .	2.0	6
23	Genomic evidence supporting the clonal expansion of extensively drug-resistant tuberculosis bacteria belonging to a rare proto - Beijing genotype. Emerging Microbes and Infections, 2020, 9, 2632-2641.	6.5	5
24	Genetic risk of obesity as a modifier of associations between neighbourhood environment and body mass index: an observational study of 335 046 UK Biobank participants. BMJ Nutrition, Prevention and Health, 2020, 3, 247-255.	3.7	15
25	Genomic Epidemiology of Carbapenemase Producing Klebsiella pneumoniae Strains at a Northern Portuguese Hospital Enables the Detection of a Misidentified Klebsiella variicola KPC-3 Producing Strain. Microorganisms, 2020, 8, 1986.	3.6	13
26	Robust barcoding and identification of Mycobacterium tuberculosis lineages for epidemiological and clinical studies. Genome Medicine, 2020, 12, 114.	8.2	79
27	Combining structure and genomics to understand antimicrobial resistance. Computational and Structural Biotechnology Journal, 2020, 18, 3377-3394.	4.1	17
28	A novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infections. EBioMedicine, 2020, 55, 102757.	6.1	41
29	Emergence of multidrug-resistant <i>Mycobacterium tuberculosis</i> of the Beijing lineage in Portugal and Guinea-Bissau: a snapshot of moving clones by whole-genome sequencing. Emerging Microbes and Infections, 2020, 9, 1342-1353.	6.5	14
30	Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics, 2020, 21, 174.	2.8	28
31	Using genomics to understand the origin and dispersion of multidrug and extensively drug resistant tuberculosis in Portugal. Scientific Reports, 2020, 10, 2600.	3.3	26
32	A potential antigenic mimicry between viral and human proteins linking Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) with autoimmunity: The case of HPV immunization. Autoimmunity Reviews, 2020, 19, 102487.	5.8	9
33	A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria. PLoS Genetics, 2020, 16, e1008576.	3.5	24
34	Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study. Microbial Genomics, 2020, 6, .	2.0	69
35	Robust detection of point mutations involved in multidrug-resistant Mycobacterium tuberculosis in the presence of co-occurrent resistance markers. PLoS Computational Biology, 2020, 16, e1008518.	3.2	11
36	PrimedRPA: primer design for recombinase polymerase amplification assays. Bioinformatics, 2019, 35, 682-684.	4.1	52

JODY E PHELAN

#	Article	IF	CITATIONS
37	Mycobacterium tuberculosis whole genome sequencing provides insights into the Manila strain and drug-resistance mutations in the Philippines. Scientific Reports, 2019, 9, 9305.	3.3	33
38	Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti-tuberculous drugs. Genome Medicine, 2019, 11, 41.	8.2	248
39	Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Scientific Reports, 2019, 9, 14996.	3.3	24
40	A novel Ancestral Beijing sublineage of Mycobacterium tuberculosis suggests the transition site to Modern Beijing sublineages. Scientific Reports, 2019, 9, 13718.	3.3	35
41	Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data. Frontiers in Genetics, 2019, 10, 922.	2.3	51
42	An integrated whole genome analysis of Mycobacterium tuberculosis reveals insights into relationship between its genome, transcriptome and methylome. Scientific Reports, 2019, 9, 5204.	3.3	26
43	Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance. BMC Genomics, 2019, 20, 252.	2.8	41
44	Whole-genome sequencing resolves a polyclonal outbreak by extended-spectrum beta-lactam and carbapenem-resistant Klebsiella pneumoniae in a Portuguese tertiary-care hospital. Microbial Genomics, 2019, 7, .	2.0	16
45	Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nature Genetics, 2018, 50, 307-316.	21.4	271
46	Methylation in Mycobacterium tuberculosis is lineage specific with associated mutations present globally. Scientific Reports, 2018, 8, 160.	3.3	31
47	Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 15356.	3.3	64
48	Global analysis of Plasmodium falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole-genome sequencing data and meta-analysis. Infection, Genetics and Evolution, 2018, 62, 211-219.	2.3	40
49	Evidence for Host-Bacterial Co-evolution via Genome Sequence Analysis of 480 Thai Mycobacterium tuberculosis Lineage 1 Isolates. Scientific Reports, 2018, 8, 11597.	3.3	44
50	Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics, 2018, 19, 613.	2.8	57
51	Zika might not be acting alone: Using an ecological study approach to investigate potential co-acting risk factors for an unusual pattern of microcephaly in Brazil. PLoS ONE, 2018, 13, e0201452.	2.5	45
52	Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. PLoS Neglected Tropical Diseases, 2018, 12, e0006457.	3.0	26
53	Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis. Scientific Reports, 2017, 7, 42225.	3.3	84
54	Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Scientific Reports, 2017, 7, 14407.	3.3	41

JODY E PHELAN

#	Article	IF	CITATIONS
55	Single nucleotide polymorphisms in efflux pumps genes in extensively drug resistant Mycobacterium tuberculosis isolates from Pakistan. Tuberculosis, 2017, 107, 20-30.	1.9	24
56	Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Neglected Tropical Diseases, 2017, 11, e0005824.	3.0	47
57	Pyrazinamide resistance-conferring mutations in pncA and the transmission of multidrug resistant TB in Georgia. BMC Infectious Diseases, 2017, 17, 491.	2.9	21
58	Outcomes, infectiousness, and transmission dynamics of patients with extensively drug-resistant tuberculosis and home-discharged patients with programmatically incurable tuberculosis: a prospective cohort study. Lancet Respiratory Medicine,the, 2017, 5, 269-281.	10.7	106
59	The variability and reproducibility of whole genome sequencing technology for detecting resistance to anti-tuberculous drugs. Genome Medicine, 2016, 8, 132.	8.2	44
60	Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Medicine, 2016, 14, 31.	5.5	102
61	Recombination in pe/ppe genes contributes to genetic variation in Mycobacterium tuberculosis lineages. BMC Genomics, 2016, 17, 151.	2.8	62
62	Turkish and Japanese Mycobacterium tuberculosis sublineages share a remote common ancestor. Infection, Genetics and Evolution, 2016, 45, 461-473.	2.3	8
63	The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae. International Journal of Mycobacteriology, 2015, 4, 207-216.	0.6	19