
Daan Christiaens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neonatal multi-modal cortical profiles predict 18-month developmental outcomes. Developmental Cognitive Neuroscience, 2022, 54, 101103.	1.9	11
2	Effects of gestational age at birth on perinatal structural brain development in healthy termâ€born babies. Human Brain Mapping, 2022, 43, 1577-1589.	1.9	3
3	Predicting age and clinical risk from the neonatal connectome. NeuroImage, 2022, 257, 119319.	2.1	11
4	The Developing Human Connectome Project Neonatal Data Release. Frontiers in Neuroscience, 2022, 16,	1.4	42
5	The developing brain structural and functional connectome fingerprint. Developmental Cognitive Neuroscience, 2022, 55, 101117.	1.9	5
6	Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI. NeuroImage, 2021, 225, 117437.	2.1	44
7	Uncertainty-Aware Deep Learning Based Deformable Registration. Lecture Notes in Computer Science, 2021, , 54-63.	1.0	1
8	Unsupervised Diffeomorphic Surface Registration and Non-linear Modelling. Lecture Notes in Computer Science, 2021, , 118-128.	1.0	1
9	Development of human white matter pathways in utero over the second and third trimester. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	55
10	Multi-Channel 4D Parametrized Atlas of Macro- and Microstructural Neonatal Brain Development. Frontiers in Neuroscience, 2021, 15, 661704.	1.4	8
11	Brain network hubs and cognitive performance of survivors of childhood infratentorial tumors. Radiotherapy and Oncology, 2021, 161, 118-125.	0.3	5
12	dStripe: Slice artefact correction in diffusion MRI via constrained neural network. Medical Image Analysis, 2021, 74, 102255.	7.0	3
13	Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. NeuroImage, 2021, 243, 118488.	2.1	40
14	Higher Order Spherical Harmonics Reconstruction of Fetal Diffusion MRI With Intensity Correction. IEEE Transactions on Medical Imaging, 2020, 39, 1104-1113.	5.4	20
15	On the need for bundle-specific microstructure kernels in diffusion MRI. NeuroImage, 2020, 208, 116460.	2.1	9
16	Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. NeuroImage: Clinical, 2020, 28, 102423.	1.4	14
17	Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results. NeuroImage, 2020, 221, 117128.	2.1	54
18	A dataâ€driven approach to optimising the encoding for multiâ€shell diffusion MRI with application to neonatal imaging. NMR in Biomedicine, 2020, 33, e4348.	1.6	18

DAAN CHRISTIAENS

#	Article	IF	CITATIONS
19	Parental age effects on neonatal white matter development. NeuroImage: Clinical, 2020, 27, 102283.	1.4	12
20	Development of Microstructural and Morphological Cortical Profiles in the Neonatal Brain. Cerebral Cortex, 2020, 30, 5767-5779.	1.6	42
21	Heterogeneity in Brain Microstructural Development Following Preterm Birth. Cerebral Cortex, 2020, 30, 4800-4810.	1.6	54
22	Multi-channel Registration for Diffusion MRI: Longitudinal Analysis for the Neonatal Brain. Lecture Notes in Computer Science, 2020, , 111-121.	1.0	3
23	Diffusion Tensor Driven Image Registration: A Deep Learning Approach. Lecture Notes in Computer Science, 2020, , 131-140.	1.0	5
24	Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biology, 2020, 18, e3000976.	2.6	38
25	Modeling Fiber Orientations Using Diffusion MRI. Advances in Magnetic Resonance Technology and Applications, 2020, 1, 509-532.	0.0	0
26	MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 2019, 202, 116137.	2.1	1,555
27	Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neurolmage, 2019, 200, 391-404.	2.1	184
28	Muti-shell Diffusion MRI Harmonisation and Enhancement Challenge (MUSHAC): Progress and Results. Mathematics and Visualization, 2019, , 217-224.	0.4	12
29	Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery. Journal of the American Heart Association, 2019, 8, e009893.	1.6	48
30	Fixel-based analysis of the preterm brain: Disentangling bundle-specific white matter microstructural and macrostructural changes in relation to clinical risk factors. NeuroImage: Clinical, 2019, 23, 101820.	1.4	27
31	In Utero Diffusion MRI. Topics in Magnetic Resonance Imaging, 2019, 28, 255-264.	0.7	11
32	Learning Compact <inline-formula> <tex-math notation="LaTeX">\${q}\$ </tex-math> </inline-formula> -Space Representations for Multi-Shell Diffusion-Weighted MRI. IEEE Transactions on Medical Imaging, 2019, 38, 834-843.	5.4	19
33	A framework for multi-component analysis of diffusion MRI data over the neonatal period. NeuroImage, 2019, 186, 321-337.	2.1	47
34	Diffusion MRI-based cortical connectome reconstruction: dependency on tractography procedures and neuroanatomical characteristics. Brain Structure and Function, 2018, 223, 2269-2285.	1.2	60
35	Advanced MR diffusion imaging and chemotherapyâ€related changes in cerebral white matter microstructure of survivors of childhood bone and soft tissue sarcoma?. Human Brain Mapping, 2018, 39, 3375-3387.	1.9	23
36	Recovery from chemotherapy-induced white matter changes in young breast cancer survivors?. Brain Imaging and Behavior, 2018, 12, 64-77.	1.1	52

DAAN CHRISTIAENS

#	Article	IF	CITATIONS
37	Quiet echo planar imaging for functional and diffusion MRI. Magnetic Resonance in Medicine, 2018, 79, 1447-1459.	1.9	35
38	Integrated and efficient diffusion-relaxometry using ZEBRA. Scientific Reports, 2018, 8, 15138.	1.6	82
39	Slice-level diffusion encoding for motion and distortion correction. Medical Image Analysis, 2018, 48, 214-229.	7.0	22
40	Corpus callosum macro and microstructure in late-life depression. Journal of Affective Disorders, 2017, 222, 63-70.	2.0	27
41	Convexity-constrained and nonnegativity-constrained spherical factorization in diffusion-weighted imaging. Neurolmage, 2017, 146, 507-517.	2.1	18
42	ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Medical Image Analysis, 2017, 35, 250-269.	7.0	360
43	Dynamic Field Mapping and Motion Correction Using Interleaved Double Spin-Echo Diffusion MRI. Lecture Notes in Computer Science, 2017, , 523-531.	1.0	5
44	Denoising of diffusion MRI using random matrix theory. NeuroImage, 2016, 142, 394-406.	2.1	1,208
45	A Voxel-Wise, Cascaded Classification Approach to Ischemic Stroke Lesion Segmentation. Lecture Notes in Computer Science, 2016, , 254-265.	1.0	3
46	Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. NeuroImage, 2015, 123, 89-101.	2.1	128
47	Groupwise Deformable Registration of Fiber Track Sets Using Track Orientation Distributions. Mathematics and Visualization, 2014, , 151-161.	0.4	2
48	Fiber Bundle Segmentation Using Spectral Embedding and Supervised Learning. Mathematics and Visualization, 2014, , 103-114.	0.4	7
49	Atlas-Guided Global Tractography: Imposing a Prior on the Local Track Orientation. Mathematics and Visualization, 2014, , 115-123.	0.4	3
50	Grey Matter Biomarker Identification in Schizophrenia: Detecting Regional Alterations and Their Underlying Substrates. SSRN Electronic Journal, 0, , .	0.4	0