
Michael D Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1592077/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Molecular diagnosis of childhood immune dysregulation, polyendocrinopathy, and enteropathy, and implications for clinical management. Journal of Allergy and Clinical Immunology, 2022, 149, 327-339.	1.5	22
2	Spike-directed vaccination elicits robust spike-specific T-cell response, including to mutant strains. Cytotherapy, 2022, 24, 10-15.	0.3	6
3	Scheduled administration of virus-specific T cells for viral prophylaxis after pediatric allogeneic stem cell transplant. Blood Advances, 2022, 6, 2897-2907.	2.5	13
4	Robust immune responses to SARS-CoV-2 in a pediatric patient with B-Cell ALL receiving tisagenlecleucel. Pediatric Hematology and Oncology, 2022, , 1-9.	0.3	0
5	Morbidity, Mortality, and Therapeutics in Combined Immunodeficiency: Data from the USIDNET Registry. Journal of Allergy and Clinical Immunology: in Practice, 2022, , .	2.0	0
6	Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood, 2022, 140, 208-221.	0.6	13
7	Outcome of donor-derived TAA-T cell therapy in patients with high-risk or relapsed acute leukemia post allogeneic BMT. Blood Advances, 2022, 6, 2520-2534.	2.5	19
8	Transcriptomic analysis reveals optimal cytokine combinations for SARS-CoV-2-specific TÂcell therapy products. Molecular Therapy - Methods and Clinical Development, 2022, 25, 439-447.	1.8	4
9	Immunizing the imperfect immune system. Annals of Allergy, Asthma and Immunology, 2022, 129, 562-571.e1.	0.5	16
10	POLD1 Deficiency Reveals a Role for POLD1 in DNA Repair and T and B Cell Development. Journal of Clinical Immunology, 2021, 41, 270-273.	2.0	10
11	Infections in Infants with SCID: Isolation, Infection Screening, and Prophylaxis in PIDTC Centers. Journal of Clinical Immunology, 2021, 41, 38-50.	2.0	36
12	Coronavirus disease 2019 in patients with inborn errors of immunity: An international study. Journal of Allergy and Clinical Immunology, 2021, 147, 520-531.	1.5	278
13	Recurrent lymphadenitis in a female XIAP/BIRC4 mutation carrier with normal lyonization. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 1002-1005.e2.	2.0	1
14	Identification of new cytokine combinations for antigen-specific T-cell therapy products via a high-throughput multi-parameter assay. Cytotherapy, 2021, 23, 65-76.	0.3	10
15	Identification of novel HLA-restricted preferentially expressed antigen in melanoma peptides to facilitate off-the-shelf tumor-associated antigen-specific T-cell therapies. Cytotherapy, 2021, 23, 694-703.	0.3	7
16	Robust Antibody and T Cell Responses to SARS-CoV-2 in Patients with Antibody Deficiency. Journal of Clinical Immunology, 2021, 41, 1146-1153.	2.0	45
17	Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Advances, 2021, 5, 3309-3321.	2.5	26
18	Antibody responses to the SARS-CoV-2 vaccine in individuals with various inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2021, 148, 1192-1197.	1.5	67

MICHAEL D KELLER

#	Article	IF	CITATIONS
19	<i>Nfkb2</i> variants reveal a p100-degradation threshold that defines autoimmune susceptibility. Journal of Experimental Medicine, 2021, 218, .	4.2	16
20	Evaluation and Treatment of Febrile Ulceronecrotic Mucha-Habermann Disease With Ruxolitinib and Tocilizumab as Guided by Cytokine Profile. JAMA Dermatology, 2021, 157, 1381-1383.	2.0	4
21	SARS-CoV-2-Specific T Cell Responses Are Stronger in Children With Multisystem Inflammatory Syndrome Compared to Children With Uncomplicated SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 793197.	2.2	14
22	Case Report: Unmanipulated Matched Sibling Donor Hematopoietic Cell Transplantation In TBX1 Congenital Athymia: A Lifesaving Therapeutic Approach When Facing a Systemic Viral Infection. Frontiers in Immunology, 2021, 12, 721917.	2.2	2
23	Flow-based analysis of cell division identifies highly active populations within plasma products during mixed lymphocyte cultures. Blood Transfusion, 2021, 19, 456-466.	0.3	1
24	Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: AÂworking group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. Journal of Allergy and Clinical Immunology, 2020, 145, 46-69.	1.5	54
25	The pipeline of antiviral Tâ€cell therapy: what's in the clinic and undergoing development. Transfusion, 2020, 60, 7-10.	0.8	7
26	Generation of Norovirus-Specific T Cells From Human Donors With Extensive Cross-Reactivity to Variant Sequences: Implications for Immunotherapy. Journal of Infectious Diseases, 2020, 221, 578-588.	1.9	15
27	EBVâ€directed viralâ€specific Tâ€lymphocyte therapy for the treatment of EBVâ€driven lymphoma in two patients with primary immunodeficiency and DNA repair defects. Pediatric Blood and Cancer, 2020, 67, e28126.	0.8	4
28	SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood, 2020, 136, 2905-2917.	0.6	108
29	T-Cell Therapeutics Targeting Human Parainfluenza Virus 3 Are Broadly Epitope Specific and Are Cross Reactive With Human Parainfluenza Virus 1. Frontiers in Immunology, 2020, 11, 575977.	2.2	4
30	Excellent outcomes following hematopoietic cell transplantation for Wiskott-Aldrich syndrome: a PIDTC report. Blood, 2020, 135, 2094-2105.	0.6	87
31	Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 298.	1.8	8
32	Virus-specific T-cell therapies for patients with primary immune deficiency. Blood, 2020, 135, 620-628.	0.6	45
33	Generation of Zika virus–specific T cells from seropositive and virus-naÃ⁻ve donors for potential use as an autologous or "off-the-shelf―immunotherapeutic. Cytotherapy, 2019, 21, 840-855.	0.3	10
34	Case Report: Ocular toxoplasmosis in a WHIM syndrome immunodeficiency patient. F1000Research, 2019, 8, 2.	0.8	5
35	Tâ€cell receptor sequencing demonstrates persistence of virusâ€specific T cells after antiviral immunotherapy. British Journal of Haematology, 2019, 187, 206-218.	1.2	29
36	Mycobacteria-Specific T Cells May Be Expanded From Healthy Donors and Are Near Absent in Primary Immunodeficiency Disorders. Frontiers in Immunology, 2019, 10, 621.	2.2	4

MICHAEL D KELLER

#	Article	IF	CITATIONS
37	Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Advances, 2019, 3, 2057-2068.	2.5	27
38	Virus-Specific T Cells: Current and Future Use in Primary Immunodeficiency Disorders. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 809-818.	2.0	16
39	Human papilloma virus–specific T cells can be generated from naÃ⁻ve T cells for use as an immunotherapeutic strategy for immunocompromised patients. Cytotherapy, 2018, 20, 385-393.	0.3	15
40	SCID genotype and 6-month posttransplant CD4 count predict survival and immune recovery. Blood, 2018, 132, 1737-1749.	0.6	128
41	Antiviral T Cells for Adenovirus in the Pretransplant Period: A Bridge Therapy for Severe Combined Immunodeficiency. Biology of Blood and Marrow Transplantation, 2018, 24, 1944-1946.	2.0	6
42	Future of Care for Patients With Chronic Granulomatous Disease: Gene Therapy and Targeted Molecular Medicine. Journal of the Pediatric Infectious Diseases Society, 2018, 7, S40-S44.	0.6	22
43	Adoptive T Cell Therapy for Epstein–Barr Virus Complications in Patients With Primary Immunodeficiency Disorders. Frontiers in Immunology, 2018, 9, 556.	2.2	27
44	Adoptive T Cell Immunotherapy for Patients with Primary Immunodeficiency Disorders. Current Allergy and Asthma Reports, 2017, 17, 3.	2.4	10
45	Improving transplantation for IL2RG/JAK3 SCID. Blood, 2017, 129, 2049-2050.	0.6	1
46	Mutation in IRF2BP2 is responsible for a familial form of common variable immunodeficiency disorder. Journal of Allergy and Clinical Immunology, 2016, 138, 544-550.e4.	1.5	54
47	Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy, 2016, 18, 1515-1524.	0.3	33
48	Major Histocompatibility Complex Class II Deficiency due to a Novel Mutation in RFXANK in a Child of Mexican Descent. Journal of Clinical Immunology, 2016, 36, 4-5.	2.0	11
49	Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology, 2016, 137, 1498-1505.e1.	1.5	117
50	Practice parameter for the diagnosis and management of primary immunodeficiency. Journal of Allergy and Clinical Immunology, 2015, 136, 1186-1205.e78.	1.5	564
51	Graft Versus Leukemia Response Without Graft-versus-host Disease Elicited By Adoptively Transferred Multivirus-specific T-cells. Molecular Therapy, 2015, 23, 179-183.	3.7	28