Bradford G Hill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/159181/publications.pdf

Version: 2024-02-01

108 papers 11,940 citations

57752 44 h-index 103 g-index

111 all docs

111 docs citations

times ranked

111

24187 citing authors

#	Article	IF	CITATIONS
1	In vivo deep network tracing reveals phosphofructokinase-mediated coordination of biosynthetic pathway activity in the myocardium. Journal of Molecular and Cellular Cardiology, 2022, 162, 32-42.	1.9	6
2	Transient Cell Cycle Induction in Cardiomyocytes to Treat Subacute Ischemic Heart Failure. Circulation, 2022, 145, 1339-1355.	1.6	27
3	Metabolic Determinants of Cardiomyocyte Proliferation. Stem Cells, 2022, 40, 458-467.	3.2	16
4	Pyridine nucleotide redox potential in coronary smooth muscle couples myocardial blood flow to cardiac metabolism. Nature Communications, 2022, 13, 2051.	12.8	5
5	Metabolic signatures of pregnancy-induced cardiac growth. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 323, H146-H164.	3.2	8
6	Glutaminolysis is Essential for Myofibroblast Persistence and In Vivo Targeting Reverses Fibrosis and Cardiac Dysfunction in Heart Failure. Circulation, 2022, 145, 1625-1628.	1.6	15
7	Influence of biological sex and exercise on murine cardiac metabolism. Journal of Sport and Health Science, 2022, 11, 479-494.	6.5	8
8	Considerations for using isolated cell systems to understand cardiac metabolism and biology. Journal of Molecular and Cellular Cardiology, 2021, 153, 26-41.	1.9	8
9	Endothelial progenitor cells as critical mediators of environmental air pollution-induced cardiovascular toxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1440-H1455.	3.2	14
10	Fine particulate matter (PM _{2.5}) inhalation-induced alterations in the plasma lipidome as promoters of vascular inflammation and insulin resistance. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1836-H1850.	3.2	27
11	Paraoxonase 2 Mediates Metabolic Reprogramming of Murine Tracheal Epithelial Cells in Response to the Quorum Sensing Molecule Nâ€(3â€oxododecanoyl)â€homoserine Lactone. FASEB Journal, 2021, 35, .	0.5	0
12	Cardiac PANK1 deletion exacerbates ventricular dysfunction during pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H784-H797.	3.2	6
13	Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation. Redox Biology, 2021, 46, 102094.	9.0	14
14	Subclinical markers of cardiovascular toxicity of benzene inhalation in mice. Toxicology and Applied Pharmacology, 2021, 431, 115742.	2.8	6
15	Heart slice culture system reliably demonstrates clinical drug-related cardiotoxicity. Toxicology and Applied Pharmacology, 2020, 406, 115213.	2.8	19
16	NHERF1 Loss Upregulates Enzymes of the Pentose Phosphate Pathway in Kidney Cortex. Antioxidants, 2020, 9, 862.	5.1	3
17	Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. Journal of Clinical Investigation, 2020, 130, 2081-2096.	8.2	108
18	Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biological Chemistry, 2019, 401, 3-29.	2.5	41

#	Article	IF	CITATIONS
19	Physiological Biomimetic Culture System for Pig and Human Heart Slices. Circulation Research, 2019, 125, 628-642.	4.5	60
20	Integration of flux measurements and pharmacological controls to optimize stable isotope-resolved metabolomics workflows and interpretation. Scientific Reports, 2019, 9, 13705.	3.3	18
21	Exercise Promotes Resolution of Acute Inflammation by Catecholamine-Mediated Stimulation of Resolvin D1 Biosynthesis. Journal of Immunology, 2019, 203, 3013-3022.	0.8	18
22	Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nature Communications, 2019, 10, 4509.	12.8	93
23	A metabocentric view of cardiac remodeling. Current Opinion in Physiology, 2019, 10, 43-48.	1.8	6
24	Mitochondria-associated lactate dehydrogenase is not a biologically significant contributor to bioenergetic function in murine striated muscle. Redox Biology, 2019, 24, 101177.	9.0	15
25	Editorial: Mechanisms by Which Acute and Chronic Exercise Promote Cardiometabolic Health. Frontiers in Cardiovascular Medicine, 2019, 6, 159.	2.4	0
26	Glucose Metabolism Regulates Mitochondrial Supercomplex Abundance in Murine Heart. FASEB Journal, 2019, 33, .	0.5	0
27	High throughput measurement of metabolism in planarians reveals activation of glycolysis during regeneration. Regeneration (Oxford, England), 2018, 5, 78-86.	6.3	29
28	TAK1 regulates skeletal muscle mass and mitochondrial function. JCI Insight, 2018, 3, .	5.0	38
29	Metabolic Mechanisms of Exercise-Induced Cardiac Remodeling. Frontiers in Cardiovascular Medicine, 2018, 5, 127.	2.4	56
30	Cardiac mesenchymal cells from diabetic mice are ineffective for cell therapy-mediated myocardial repair. Basic Research in Cardiology, 2018, 113, 46.	5.9	41
31	Glutathione <i>S</i> -transferase P deficiency induces glucose intolerance via JNK-dependent enhancement of hepatic gluconeogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1005-E1018.	3.5	14
32	Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload. Redox Biology, 2018, 17, 440-449.	9.0	13
33	Metabolic Coordination of Physiological and Pathological Cardiac Remodeling. Circulation Research, 2018, 123, 107-128.	4.5	232
34	Aldose reductase (AKR1B) deficiency promotes phagocytosis in bone marrow derived mouse macrophages. Chemico-Biological Interactions, 2017, 265, 16-23.	4.0	11
35	Analysis of stable isotope assisted metabolomics data acquired by high resolution mass spectrometry. Analytical Methods, 2017, 9, 2275-2283.	2.7	20
36	Systems characterization of differential plasma metabolome perturbations following thrombotic and non-thrombotic myocardial infarction. Journal of Proteomics, 2017, 160, 38-46.	2.4	15

#	Article	IF	Citations
37	Exercise-Induced Changes in Glucose Metabolism Promote Physiological Cardiac Growth. Circulation, 2017, 136, 2144-2157.	1.6	103
38	Integration of flux measurements to resolve changes in anabolic and catabolic metabolism in cardiac myocytes. Biochemical Journal, 2017, 474, 2785-2801.	3.7	55
39	Distribution based nearest neighbor imputation for truncated high dimensional data with applications to pre-clinical and clinical metabolomics studies. BMC Bioinformatics, 2017, 18, 114.	2.6	52
40	Circulating Prolidase Activity in Patients with Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2017, 4, 50.	2.4	5
41	Identification of a plasma metabolomic signature of thrombotic myocardial infarction that is distinct from non-thrombotic myocardial infarction and stable coronary artery disease. PLoS ONE, 2017, 12, e0175591.	2.5	27
42	Distinct roles of TRAF6 and TAK1 in the regulation of adipocyte survival, thermogenesis program, and high-fat diet-induced obesity. Oncotarget, 2017, 8, 112565-112583.	1.8	16
43	FVB/NJ Mice Are a Useful Model for Examining Cardiac Adaptations to Treadmill Exercise. Frontiers in Physiology, 2016, 7, 636.	2.8	22
44	Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. Journal of Biological Chemistry, 2016, 291, 13634-13648.	3.4	35
45	CCR7 Maintains Nonresolving Lymph Node and Adipose Inflammation in Obesity. Diabetes, 2016, 65, 2268-2281.	0.6	32
46	Nuclear respiratory factor-1 and bioenergetics in tamoxifen-resistant breast cancer cells. Experimental Cell Research, 2016, 347, 222-231.	2.6	30
47	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
48	Vinyl Chloride Metabolites Potentiate Inflammatory Liver Injury Caused by LPS in Mice. Toxicological Sciences, 2016, 151, 312-323.	3.1	38
49	Glutamine Regulates Cardiac Progenitor Cell Metabolism and Proliferation. Stem Cells, 2015, 33, 2613-2627.	3.2	46
50	O-GlcNAcylation Negatively Regulates Cardiomyogenic Fate in Adult Mouse Cardiac Mesenchymal Stromal Cells. PLoS ONE, 2015, 10, e0142939.	2.5	6
51	Autophagic regulation of smooth muscle cell biology. Redox Biology, 2015, 4, 97-103.	9.0	78
52	Insights into an adipocyte whitening program. Adipocyte, 2015, 4, 75-80.	2.8	9
53	Genetic Deficiency of Glutathione <i>S</i> -Transferase P Increases Myocardial Sensitivity to Ischemia–Reperfusion Injury. Circulation Research, 2015, 117, 437-449.	4.5	34
54	High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation. Biochemical Journal, 2015, 467, 115-126.	3.7	39

#	Article	IF	CITATIONS
55	Bioenergetic differences between MCF-7 and T47D breast cancer cells and their regulation by oestradiol and tamoxifen. Biochemical Journal, 2015, 465, 49-61.	3.7	46
56	Insights Into Metabolic Remodeling of the Hypertrophic and Failing Myocardium. Circulation: Heart Failure, 2014, 7, 874-876.	3.9	2
57	Antiobesogenic Role of Endothelial Nitric Oxide Synthase. Vitamins and Hormones, 2014, 96, 323-346.	1.7	16
58	Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice. Frontiers in Physiology, 2014, 5, 453.	2.8	22
59	Control of glutamine metabolism by the tumor suppressor Rb. Oncogene, 2014, 33, 556-566.	5.9	169
60	Redox regulation of antioxidants, autophagy, and the response to stress: Implications for electrophile therapeutics. Free Radical Biology and Medicine, 2014, 71, 196-207.	2.9	207
61	Metabolomic Analysis of Pressure-Overloaded and Infarcted Mouse Hearts. Circulation: Heart Failure, 2014, 7, 634-642.	3.9	181
62	Cardiomyocyte $<$ i $>$ Ogt $<$ /i $>$ is essential for postnatal viability. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H142-H153.	3.2	78
63	Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nature Protocols, 2014, 9, 421-438.	12.0	259
64	Metabolic remodeling of white adipose tissue in obesity. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E262-E277.	3.5	130
65	Regulation of obesity and insulin resistance by nitric oxide. Free Radical Biology and Medicine, 2014, 73, 383-399.	2.9	198
66	Hyperglycemia suppresses cardiomyocyte bioenergetic reserve independent of Oâ€ClcNAcylation (1155.5). FASEB Journal, 2014, 28, 1155.5.	0.5	0
67	Nutrient excess promotes accumulation of bone marrowâ€derived progenitor cells in adipose tissue (641.12). FASEB Journal, 2014, 28, 641.12.	0.5	0
68	TWEAK promotes exercise intolerance by decreasing skeletal muscle oxidative phosphorylation capacity. Skeletal Muscle, 2013, 3, 18.	4.2	30
69	Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radical Biology and Medicine, 2013, 65, 693-703.	2.9	86
70	Oxidized lipids activate autophagy in a JNK-dependent manner by stimulating the endoplasmic reticulum stress response. Redox Biology, 2013, 1, 56-64.	9.0	159
71	Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxidation products. Free Radical Biology and Medicine, 2013, 59, 56-68.	2.9	20
72	Quercetin prevents left ventricular hypertrophy in the Apo E knockout mouse. Redox Biology, 2013, 1, 381-386.	9.0	29

#	Article	IF	Citations
73	Mitochondrial fission induced by platelet-derived growth factor regulates vascular smooth muscle cell bioenergetics and cell proliferation. Redox Biology, 2013, 1, 542-551.	9.0	137
74	PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress. Biochemical Journal, 2013, 451, 375-388.	3.7	175
75	Recent Advances in Mitochondrial Research. Circulation Research, 2013, 113, e107-10.	4.5	7
76	Protein <i>O</i> -GlcNAcylation Is a Novel Cytoprotective Signal in Cardiac Stem Cells. Stem Cells, 2013, 31, 765-775.	3.2	54
77	Skeletal Muscle Lipid Peroxidation and Insulin Resistance in Humans. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1182-E1186.	3.6	53
78	Lipid Peroxidation Product 4-Hydroxy-trans-2-nonenal Causes Endothelial Activation by Inducing Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2012, 287, 11398-11409.	3.4	105
79	Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiological Genomics, 2012, 44, 1208-1213.	2.3	64
80	Overexpression of Endothelial Nitric Oxide Synthase Prevents Diet-Induced Obesity and Regulates Adipocyte Phenotype. Circulation Research, 2012, 111, 1176-1189.	4.5	134
81	Protein S-glutathiolation: Redox-sensitive regulation of protein function. Journal of Molecular and Cellular Cardiology, 2012, 52, 559-567.	1.9	106
82	Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biological Chemistry, 2012, 393, 1485-1512.	2.5	376
83	Responses of hypertrophied myocytes to reactive species: implications for glycolysis and electrophile metabolism. Biochemical Journal, 2011, 435, 519-528.	3.7	26
84	Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radical Biology and Medicine, 2011, 51, 1621-1635.	2.9	372
85	Mitogen-Mediated Autophagy Regulates Vascular Smooth Muscle Cell Phenotype. Free Radical Biology and Medicine, 2011, 51, S41-S42.	2.9	1
86	Bioenergetic function in cardiovascular cells: The importance of the reserve capacity and its biological regulation. Chemico-Biological Interactions, 2011, 191, 288-295.	4.0	134
87	Novel insights into the role of glucose metabolism in regulating vascular smooth muscle cell phenotype and proliferative capacity. FASEB Journal, 2011, 25, 1026.33.	0.5	1
88	Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor. Biochemical Journal, 2010, 428, 255-267.	3.7	93
89	Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 285-295.	1.0	78
90	Mitochondrial reserve capacity in endothelial cells: The impact of nitric oxide and reactive oxygen species. Free Radical Biology and Medicine, 2010, 48, 905-914.	2.9	290

#	Article	IF	CITATIONS
91	What Part of NO Don't You Understand? Some Answers to the Cardinal Questions in Nitric Oxide Biology. Journal of Biological Chemistry, 2010, 285, 19699-19704.	3.4	269
92	Measurement and Identification of S-Glutathiolated Proteins. Methods in Enzymology, 2010, 473, 179-197.	1.0	40
93	Protein <i>O</i> -GlcNAcylation: a new signaling paradigm for the cardiovascular system. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H13-H28.	3.2	129
94	Beyond Reactive Oxygen Species. Circulation Research, 2009, 105, 1044-1046.	4.5	35
95	Methods for imaging and detecting modification of proteins by reactive lipid species. Free Radical Biology and Medicine, 2009, 47, 201-212.	2.9	32
96	Methods for the determination and quantification of the reactive thiol proteome. Free Radical Biology and Medicine, 2009, 47, 675-683.	2.9	84
97	Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chemico-Biological Interactions, 2009, 178, 242-249.	4.0	33
98	Importance of the bioenergetic reserve capacity in response to cardiomyocyte stress induced by 4-hydroxynonenal. Biochemical Journal, 2009, 424, 99-107.	3.7	246
99	Myocardial ischaemia inhibits mitochondrial metabolism of 4-hydroxy- <i>trans</i> -2-nonenal. Biochemical Journal, 2009, 417, 513-524.	3.7	44
100	Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochemical Journal, 2008, 410, 525-534.	3.7	155
101	Cardioprotection by <i>N</i> -Acetylglucosamine Linkage to Cellular Proteins. Circulation, 2008, 117, 1172-1182.	1.6	215
102	Cardiac Myocyte–Specific Expression of Inducible Nitric Oxide Synthase Protects Against Ischemia/Reperfusion Injury by Preventing Mitochondrial Permeability Transition. Circulation, 2008, 118, 1970-1978.	1.6	109
103	S-Nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning. Biochemical Journal, 2008, 412, e11-e13.	3.7	20
104	Mechanisms of acrolein-induced myocardial dysfunction: implications for environmental and endogenous aldehyde exposure. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3673-H3684.	3.2	92
105	Downregulation of CuZn-superoxide dismutase contributes to \hat{l}^2 -adrenergic receptor-mediated oxidative stress in the heart. Cardiovascular Research, 2007, 74, 445-455.	3.8	107
106	Role of glutathiolation in preservation, restoration and regulation of protein function. IUBMB Life, 2007, 59, 21-26.	3.4	44
107	The lipid peroxidation product 4â€hydroxyâ€transâ€2â€nonenal (HNE) promotes unique ER stress responses. FASEB Journal, 2007, 21, A978.	0.5	0
108	Protein glutathiolation by nitric oxide: an intracellular mechanism regulating redox protein modification. FASEB Journal, 2006, 20, 1715-1717.	0.5	108